IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2680-d1055210.html
   My bibliography  Save this article

Geothermal Pavements: Experimental Testing, Prototype Testing, and Numerical Analysis of Recycled Demolition Wastes

Author

Listed:
  • Behnam Ghorbani

    (Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
    AECOM Australia, Pavements and Aviation, Melbourne, VIC 3008, Australia)

  • Arul Arulrajah

    (Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

  • Guillermo A. Narsilio

    (Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia)

  • Suksun Horpibulsuk

    (School of Civil Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
    Center of Excellence in Innovation for Sustainable Infrastructure Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
    Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand)

  • Apinun Buritatum

    (Center of Excellence in Innovation for Sustainable Infrastructure Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

Abstract

Geothermal pavements have the potential to reduce the pavement surface temperature by circulating fluid in pipes within the pavement structure. This research investigated an innovative geothermal pavement system with multiple benefits, such as reducing the surface temperature and harvesting heat energy for power generation. This research aimed to provide an understanding of the mechanical properties of geothermal pavements constructed with construction and demolition (C&D) waste materials through large-scale physical testing, experimental testing, small-scale prototype testing, and numerical simulation. The mechanical properties of the geothermal pavement system were assessed under long-term traffic loading conditions using a prototype test system. The repeated load triaxial and repeated-load California bearing ratio tests were also undertaken to evaluate the effect of pipe inclusion on the permanent deformation, stiffness, and strength of the pavement base. A numerical model was subsequently developed and calibrated using the data from small-scale prototype testing. In addition, the effects of the flow rate and pipe materials on the thermal performances of the geothermal pavements were also investigated in this research. The inclusion of pipes in the pavement base layer was found to have negligible detrimental effects on the deformation behavior of RCA. The resilient moduli of recycled concrete aggregate (RCA) samples slightly decreased with the inclusion of pipes. An HDPE pipe reduced the stiffness of the RCA + HDPE mix. On the other hand, a copper pipe’s high stiffness improved the mix’s strength. The numerical simulations indicated that for the HDPE pipe, increasing the flow rate from 500 mL/min to 2000 mL/min reduced the surface temperature by approximately 1.3%, while using the copper pipe resulted in an approximately 4% further decrease in the surface temperature compared to the HDPE pipe.

Suggested Citation

  • Behnam Ghorbani & Arul Arulrajah & Guillermo A. Narsilio & Suksun Horpibulsuk & Apinun Buritatum, 2023. "Geothermal Pavements: Experimental Testing, Prototype Testing, and Numerical Analysis of Recycled Demolition Wastes," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2680-:d:1055210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guldentops, Gert & Nejad, Alireza Mahdavi & Vuye, Cedric & Van den bergh, Wim & Rahbar, Nima, 2016. "Performance of a pavement solar energy collector: Model development and validation," Applied Energy, Elsevier, vol. 163(C), pages 180-189.
    2. Pan, Pan & Wu, Shaopeng & Xiao, Yue & Liu, Gang, 2015. "A review on hydronic asphalt pavement for energy harvesting and snow melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 624-634.
    3. Bobes-Jesus, Vanesa & Pascual-Muñoz, Pablo & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2013. "Asphalt solar collectors: A literature review," Applied Energy, Elsevier, vol. 102(C), pages 962-970.
    4. Pascual-Muñoz, P. & Castro-Fresno, D. & Serrano-Bravo, P. & Alonso-Estébanez, A., 2013. "Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors," Applied Energy, Elsevier, vol. 111(C), pages 324-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
    2. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    3. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    4. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    5. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    6. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    7. Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
    8. Ghalandari, Taher & Kia, Alalea & Taborda, David M.G. & Van den bergh, Wim & Vuye, Cedric, 2023. "Thermal performance optimisation of Pavement Solar Collectors using response surface methodology," Renewable Energy, Elsevier, vol. 210(C), pages 656-670.
    9. Ghalandari, Taher & Baetens, Robin & Verhaert, Ivan & SNM Nasir, Diana & Van den bergh, Wim & Vuye, Cedric, 2022. "Thermal performance of a controllable pavement solar collector prototype with configuration flexibility," Applied Energy, Elsevier, vol. 313(C).
    10. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    11. Caner Çuhac & Anne Mäkiranta & Petri Välisuo & Erkki Hiltunen & Mohammed Elmusrati, 2020. "Temperature Measurements on a Solar and Low Enthalpy Geothermal Open-Air Asphalt Surface Platform in a Cold Climate Region," Energies, MDPI, vol. 13(4), pages 1-16, February.
    12. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Chiarelli, A. & Dawson, A.R. & García, A., 2015. "Parametric analysis of energy harvesting pavements operated by air convection," Applied Energy, Elsevier, vol. 154(C), pages 951-958.
    14. Roshani, Hossein & Dessouky, Samer & Montoya, Arturo & Papagiannakis, A.T., 2016. "Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study," Applied Energy, Elsevier, vol. 182(C), pages 210-218.
    15. Guldentops, Gert & Nejad, Alireza Mahdavi & Vuye, Cedric & Van den bergh, Wim & Rahbar, Nima, 2016. "Performance of a pavement solar energy collector: Model development and validation," Applied Energy, Elsevier, vol. 163(C), pages 180-189.
    16. Zabihi, Niloufar & Gu, Zewen & Saafi, Mohamed, 2023. "Crank shaft road electromagnetic road energy harvester for smart city applications," Applied Energy, Elsevier, vol. 352(C).
    17. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    18. Nasir, Diana S.N.M. & Hughes, Ben Richard & Calautit, John Kaiser, 2015. "A study of the impact of building geometry on the thermal performance of road pavement solar collectors," Energy, Elsevier, vol. 93(P2), pages 2614-2630.
    19. O'Hegarty, Richard & Kinnane, Oliver & McCormack, Sarah J., 2017. "Concrete solar collectors for façade integration: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 206(C), pages 1040-1061.
    20. Raheb Mirzanamadi & Carl-Eric Hagentoft & Pär Johansson, 2018. "Numerical Investigation of Harvesting Solar Energy and Anti-Icing Road Surfaces Using a Hydronic Heating Pavement and Borehole Thermal Energy Storage," Energies, MDPI, vol. 11(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2680-:d:1055210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.