IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7766-d847936.html
   My bibliography  Save this article

The Extreme Heat Wave of Summer 2021 in Athens (Greece): Cumulative Heat and Exposure to Heat Stress

Author

Listed:
  • Dimitra Founda

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens, GR-15236 Athens, Greece)

  • George Katavoutas

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens, GR-15236 Athens, Greece)

  • Fragiskos Pierros

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens, GR-15236 Athens, Greece)

  • Nikolaos Mihalopoulos

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens, GR-15236 Athens, Greece
    Department of Chemistry, University of Crete, GR-71003 Heraklion, Greece)

Abstract

The Mediterranean has been identified as a ‘climate change hot spot’, already experiencing faster warming rates than the global average, along with an increased occurrence of heat waves (HWs), prolonged droughts, and forest fires. During summer 2021, the Mediterranean faced prolonged and severe HWs, triggering hundreds of wildfires across the region. Greece, in particular, was hit by one of the most intense HWs in its modern history, with national all-time record temperatures being observed from 28 July to 6 August 2021. The HW was associated with extreme wildfires in many parts of the country, with catastrophic environmental and societal consequences. The study accentuated the rarity and special characteristics of this HW (HW2021) through the analysis of the historical climate record of the National Observatory of Athens (NOA) on a centennial time scale and comparison with previous HWs. The findings showed that HW2021 was ranked first in terms of persistence (with a total duration of 10 days) and highest observed nighttime temperatures, as well as ‘cumulative heat’, accounting for both the duration and intensity of the event. Exceptionally hot conditions during nighttime were intensified by the urban heat island effect in the city of Athens. Human exposure to heat-related stress during the event was further assessed by the use of bioclimatic indices such as the Universal Thermal Climate Index (UTCI). The study points to the interconnected climate risks in the area and especially to the increased exposure of urban populations to conditions of heat stress, due to the additive urban effect.

Suggested Citation

  • Dimitra Founda & George Katavoutas & Fragiskos Pierros & Nikolaos Mihalopoulos, 2022. "The Extreme Heat Wave of Summer 2021 in Athens (Greece): Cumulative Heat and Exposure to Heat Stress," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7766-:d:847936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dana Habeeb & Jason Vargo & Brian Stone, 2015. "Rising heat wave trends in large US cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1651-1665, April.
    2. E. M. Fischer & S. Sippel & R. Knutti, 2021. "Increasing probability of record-shattering climate extremes," Nature Climate Change, Nature, vol. 11(8), pages 689-695, August.
    3. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    4. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zherong Wu & Xinyang Zhang & Peifeng Ma & Mei-Po Kwan & Yang Liu, 2023. "How Did Urban Environmental Characteristics Influence Land Surface Temperature in Hong Kong from 2017 to 2022? Evidence from Remote Sensing and Land Use Data," Sustainability, MDPI, vol. 15(21), pages 1-26, November.
    2. Xiamei Yao & Yuanyuan Chen & Qingyi Zhang & Zhongqiong Mou & Xiaojie Yao & Chun Ou, 2022. "Assessment of the Urban Expansion and Its Impact on the Eco-Environment—A Case Study of Hefei Municipal Area," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    3. Nikolaos Sylliris & Apostolos Papagiannakis & Aristotelis Vartholomaios, 2023. "Improving the Climate Resilience of Urban Road Networks: A Simulation of Microclimate and Air Quality Interventions in a Typology of Streets in Thessaloniki Historic Centre," Land, MDPI, vol. 12(2), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramón E. López & Vinod Thomas & Pablo Troncoso, 2015. "Climate Change and Natural Disasters," Working Papers wp414, University of Chile, Department of Economics.
    2. Dim Coumou & Alexander Robinson & Stefan Rahmstorf, 2013. "Global increase in record-breaking monthly-mean temperatures," Climatic Change, Springer, vol. 118(3), pages 771-782, June.
    3. Yulong Yao & Wei Zhang & Ben Kirtman, 2023. "Increasing impacts of summer extreme precipitation and heatwaves in eastern China," Climatic Change, Springer, vol. 176(10), pages 1-20, October.
    4. Sebastian Sippel & F Otto, 2014. "Beyond climatological extremes - assessing how the odds of hydrometeorological extreme events in South-East Europe change in a warming climate," Climatic Change, Springer, vol. 125(3), pages 381-398, August.
    5. Friederike Otto & Suzanne Rosier & Myles Allen & Neil Massey & Cameron Rye & Jara Quintana, 2015. "Attribution analysis of high precipitation events in summer in England and Wales over the last decade," Climatic Change, Springer, vol. 132(1), pages 77-91, September.
    6. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    7. Schallaböck, Karl Otto & Fischedick, Manfred & Brouns, Bernd & Luhmann, Hans-Jochen & Merten, Frank, 2006. "Klimawirksame Emissionen des PKW-Verkehrs und Bewertung von Minderungsstrategien," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 34, number 34.
    8. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    9. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    10. Pelli, Martino & Tschopp, Jeanne & Bezmaternykh, Natalia & Eklou, Kodjovi M., 2023. "In the eye of the storm: Firms and capital destruction in India," Journal of Urban Economics, Elsevier, vol. 134(C).
    11. Michel Beine & Ilan Noy & Christopher Parsons, 2021. "Climate change, migration and voice," Climatic Change, Springer, vol. 167(1), pages 1-27, July.
    12. Claudio, Morana & Giacomo, Sbrana, 2017. "Temperature anomalies, radiative forcing and ENSO," Working Papers 361, University of Milano-Bicocca, Department of Economics, revised 10 Feb 2017.
    13. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    14. Luke J. Harrington, 2017. "Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change," Climatic Change, Springer, vol. 141(4), pages 641-654, April.
    15. Marlos Goes & Nancy Tuana & Klaus Keller, 2011. "The economics (or lack thereof) of aerosol geoengineering," Climatic Change, Springer, vol. 109(3), pages 719-744, December.
    16. Malik, Ihtisham A. & Chowdhury, Hasibul & Alam, Md Samsul, 2023. "Equity market response to natural disasters: Does firm's corporate social responsibility make difference?," Global Finance Journal, Elsevier, vol. 55(C).
    17. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    18. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    19. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    20. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7766-:d:847936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.