IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6488-d824285.html
   My bibliography  Save this article

The Effects of the Use of Algae and Jatropha Biofuels on Aircraft Engine Exhaust Emissions in Cruise Phase

Author

Listed:
  • Małgorzata Pawlak

    (Department of Ship Operation, Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland)

  • Michał Kuźniar

    (Department of Aerospace Engineering, Faculty of Mechanical Engineering and Aviation, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

Abstract

Due to environmental pressure and the prevailing political and economic situation in the world, alternatives to traditional fossil fuels are being sought. The use of bio-derived fuels may reduce the emission of pollutants present in jet engine exhausts. The presented research investigates the possibility of replacing the conventional fuel, which is kerosene, with plant-derived fuels from marine algae and jatropha. During the analysis, based on the available data, the emission indices of pollutants were computed, and then, for the adopted aircraft and route, the emissions for kerosene and alternative fuels were determined. A significant reduction in the emission of most analyzed compounds (even by 40% for CO) was achieved compared to the emission for kerosene. The obtained results are discussed in the conclusion section.

Suggested Citation

  • Małgorzata Pawlak & Michał Kuźniar, 2022. "The Effects of the Use of Algae and Jatropha Biofuels on Aircraft Engine Exhaust Emissions in Cruise Phase," Sustainability, MDPI, vol. 14(11), pages 1-10, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6488-:d:824285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nava, Consuelo R. & Meleo, Linda & Cassetta, Ernesto & Morelli, Giovanna, 2018. "The impact of the EU-ETS on the aviation sector: Competitive effects of abatement efforts by airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 20-34.
    2. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    3. Małgorzata Pawlak, 2021. "Effect of Energy Consumption Reduction on the Decrease of CO 2 Emissions during the Aircraft’s Flight," Energies, MDPI, vol. 14(9), pages 1-15, May.
    4. Donateo, Teresa & Spedicato, Luigi, 2017. "Fuel economy of hybrid electric flight," Applied Energy, Elsevier, vol. 206(C), pages 723-738.
    5. Talal Yusaf & Louis Fernandes & Abd Rahim Abu Talib & Yazan S. M. Altarazi & Waleed Alrefae & Kumaran Kadirgama & Devarajan Ramasamy & Aruna Jayasuriya & Gordon Brown & Rizalman Mamat & Hayder Al Dhah, 2022. "Sustainable Aviation—Hydrogen Is the Future," Sustainability, MDPI, vol. 14(1), pages 1-17, January.
    6. Rudolf Andoga & Ladislav Főző & Martin Schrötter & Stanislav Szabo, 2021. "The Use of Ethanol as an Alternative Fuel for Small Turbojet Engines," Sustainability, MDPI, vol. 13(5), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paula Kurzawska-Pietrowicz & Remigiusz Jasiński, 2024. "A Review of Alternative Aviation Fuels," Energies, MDPI, vol. 17(16), pages 1-22, August.
    2. Remigiusz Jasiński & Radosław Przysowa, 2024. "Evaluating the Impact of Using HEFA Fuel on the Particulate Matter Emissions from a Turbine Engine," Energies, MDPI, vol. 17(5), pages 1-11, February.
    3. Raji, Abdulwasiu Muhammed & Manescau, Brady & Chetehouna, Khaled & Ekomy Ango, Serge & Ogabi, Raphael, 2025. "Performance and spray characteristics of fossil JET A-1 and bioJET fuel: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    4. He, Xin & Wang, Ning & Zhou, Qiaoqiao & Huang, Jun & Ramakrishna, Seeram & Li, Fanghua, 2024. "Smart aviation biofuel energy system coupling with machine learning technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Chenyu Gan & Qinglin Ma & Shengyu Bao & Xinming Wang & Tian Qiu & Shuiting Ding, 2023. "Discussion of the Standards System for Sustainable Aviation Fuels: An Aero-Engine Safety Perspective," Sustainability, MDPI, vol. 15(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Chen & Liu, Xiaoman & Wang, Zhen & Yang, Lu & Liu, Hao & Yang, Nan & Xu, Shaodong & Cao, Libin & Zhang, Zhe & Pang, Lingyun & Zhang, Li & Cai, Bofeng, 2023. "An emissions inventory using flight information reveals the long-term changes of aviation CO2 emissions in China," Energy, Elsevier, vol. 262(PB).
    2. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    3. Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Marek Jaszczur, 2023. "A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    4. Laimon, Mohamd & Mai, Thanh & Goh, Steven & Yusaf, Talal, 2022. "System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector," Renewable Energy, Elsevier, vol. 193(C), pages 1041-1048.
    5. Cui, Qiang & Shi, Xiaoxue & Guo, Lei, 2024. "Cost-benefit analysis of using hydrogen energy in african aviation industry," Energy, Elsevier, vol. 313(C).
    6. Chen, Shangrong & Bravo-Melgarejo, Sai & Mongeau, Romain & Malavolti, Estelle, 2023. "Adopting and diffusing hydrogen technology in air transport: An evolutionary game theory approach," Energy Economics, Elsevier, vol. 125(C).
    7. Wang, Tao & Zhang, Yu & Yin, Zhao & Zhang, Hua-liang & Qian, Ye-jian, 2023. "Energy analysis and control scheme optimizations for a recuperated gas turbine with variable power offtakes/inputs," Energy, Elsevier, vol. 285(C).
    8. Wang, Yu & Sun, Huimin & Lin, Yiming & Cui, Qiang & Shen, Yanxin & Li, Xin, 2024. "An interval-valued estimation method of aircraft route carbon emission: A function of aircraft seat capacity and route flight time," Energy, Elsevier, vol. 294(C).
    9. Talal Yusaf & K. Kadirgama & Steve Hall & Louis Fernandes, 2022. "The Future of Sustainable Aviation Fuels, Challenges and Solutions," Energies, MDPI, vol. 15(21), pages 1-4, November.
    10. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    11. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Liu, Hongwei & Ren, He & Gu, Yajing & Lin, Yonggang & Hu, Weifei & Song, Jiajun & Yang, Jinhong & Zhu, Zengxin & Li, Wei, 2023. "Design and on-site implementation of an off-grid marine current powered hydrogen production system," Applied Energy, Elsevier, vol. 330(PB).
    13. Yue‐Jun Zhang & Wei Shi & Lin Jiang, 2020. "Does China's carbon emissions trading policy improve the technology innovation of relevant enterprises?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 872-885, March.
    14. Jovović, Jelena & Popović, Saša, 2025. "Investigating volatility spillovers: Connectedness between green bonds, conventional bonds, and energy markets," Research in International Business and Finance, Elsevier, vol. 76(C).
    15. Chiambaretto, Paul & Combe, Emmanuel, 2023. "Business model hybridization but heterogeneous economic performance: Insights from low-cost and legacy carriers in Europe," Transport Policy, Elsevier, vol. 136(C), pages 83-97.
    16. Xu, Yuchao & Zhang, Yahua & Deng, Xin & Lee, Seung-Yong & Wang, Kun & Li, Linbo, 2025. "Bibliometric analysis and literature review on sustainable aviation fuel (SAF): Economic and management perspective," Transport Policy, Elsevier, vol. 162(C), pages 296-312.
    17. Edler, Jakob, 2023. "Demand, public procurement and transformation," Discussion Papers "Innovation Systems and Policy Analysis" 79, Fraunhofer Institute for Systems and Innovation Research (ISI).
    18. Csereklyei, Zsuzsanna & Stern, David I., 2020. "Flying More Efficiently: Joint Impacts of Fuel Prices, Capital Costs and Fleet Size on Airline Fleet Fuel Economy," Ecological Economics, Elsevier, vol. 175(C).
    19. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    20. Teresa Donateo & Andrea Graziano Bonatesta & Antonio Ficarella & Leonardo Lecce, 2024. "Energy Consumption and Saved Emissions of a Hydrogen Power System for Ultralight Aviation: A Case Study," Energies, MDPI, vol. 17(13), pages 1-24, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6488-:d:824285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.