IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5307-d551426.html
   My bibliography  Save this article

COVID-19: An Outcome of Biodiversity Loss or a Conspiracy? Investigating the Attitudes of Environmental Students

Author

Listed:
  • Georgios Tsantopoulos

    (Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, 68200 Orestiada, Greece)

  • Aristotelis C. Papageorgiou

    (Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece)

  • Evangelia Karasmanaki

    (Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, 68200 Orestiada, Greece)

Abstract

The global environment is being constantly degraded, placing humans at increased risk for outbreaks of infectious diseases. In this regard, environmental quality must be enhanced in order to prevent pandemics in the future. However, it is unknown whether future environmental experts are aware of the intricate relationship between environmental degradation and infectious diseases. This question is important because if they lack awareness about this relationship, they may not be able to contribute to biodiversity conservation which, in turn, can prevent outbreaks of infectious diseases. Hence, the aim of this paper is to investigate the attitudes of environmental students towards the pandemic. The primary objective is to examine their views on the origin of COVID-19 and a secondary objective is to discover the factors that affect the endorsement of conspiracy and non-conspiracy theories on the origin of COVID-19. Our findings indicated that an alarmingly high percentage of students endorsed the conspiracy theory that COVID-19 is a man-made virus for which there was a vaccine before it emerged, whereas only one in five students perceived that the virus is associated with climate change. These students are the future scientists who will be responsible for biodiversity conservation and climate change mitigation. Therefore, it is necessary to pay more attention to environmental students, both in Greece and elsewhere, and examine if such perceptions stem from any deficiencies in curricula or from the effects of the media.

Suggested Citation

  • Georgios Tsantopoulos & Aristotelis C. Papageorgiou & Evangelia Karasmanaki, 2021. "COVID-19: An Outcome of Biodiversity Loss or a Conspiracy? Investigating the Attitudes of Environmental Students," Sustainability, MDPI, vol. 13(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5307-:d:551426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karasmanaki, Evangelia & Tsantopoulos, Georgios, 2019. "Exploring future scientists' awareness about and attitudes towards renewable energy sources," Energy Policy, Elsevier, vol. 131(C), pages 111-119.
    2. Karasmanaki, Evangelia & Tsantopoulos, Georgios, 2021. "Impacts of social distancing during COVID-19 pandemic on the daily life of forestry students," Children and Youth Services Review, Elsevier, vol. 120(C).
    3. Casey A. Klofstad & Joseph E. Uscinski & Jennifer M. Connolly & Jonathan P. West, 2019. "What drives people to believe in Zika conspiracy theories?," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-8, December.
    4. Toph Allen & Kris A. Murray & Carlos Zambrana-Torrelio & Stephen S. Morse & Carlo Rondinini & Moreno Di Marco & Nathan Breit & Kevin J. Olival & Peter Daszak, 2017. "Global hotspots and correlates of emerging zoonotic diseases," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    5. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    6. Karasmanaki, Evangelia & Ioannou, Konstantinos & Katsaounis, Konstantinos & Tsantopoulos, Georgios, 2020. "The attitude of the local community towards investments in lignite before transitioning to the post-lignite era: The case of Western Macedonia, Greece," Resources Policy, Elsevier, vol. 68(C).
    7. Felicia Keesing & Lisa K. Belden & Peter Daszak & Andrew Dobson & C. Drew Harvell & Robert D. Holt & Peter Hudson & Anna Jolles & Kate E. Jones & Charles E. Mitchell & Samuel S. Myers & Tiffany Bogich, 2010. "Impacts of biodiversity on the emergence and transmission of infectious diseases," Nature, Nature, vol. 468(7324), pages 647-652, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Naughtin, Claire & Hajkowicz, Stefan & Schleiger, Emma & Bratanova, Alexandra & Cameron, Alicia & Zamin, T & Dutta, A, 2022. "Our Future World: Global megatrends impacting the way we live over coming decades," MPRA Paper 113900, University Library of Munich, Germany.
    3. Hajkowicz, Stefan & Bratanova, Alexandra & Schleiger, Emma & Brosnan, A, 2020. "Global trade and investment megatrends," MPRA Paper 113240, University Library of Munich, Germany.
    4. Blanco, Esther & Baier, Alexandra & Holzmeister, Felix & Jaber-Lopez, Tarek & Struwe, Natalie, 2022. "Substitution of social sustainability concerns under the Covid-19 pandemic," Ecological Economics, Elsevier, vol. 192(C).
    5. Rosemary A. McFarlane & Adrian C. Sleigh & Anthony J. McMichael, 2013. "Land-Use Change and Emerging Infectious Disease on an Island Continent," IJERPH, MDPI, vol. 10(7), pages 1-21, June.
    6. Georgios Tsantopoulos & Evangelia Karasmanaki, 2021. "Energy Transition and Climate Change in Decision-Making Processes," Sustainability, MDPI, vol. 13(23), pages 1-3, December.
    7. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    8. Blanco, Esther & Struwe, Natalie & Walker, James M., 2021. "Experimental evidence on sharing rules and additionality in transfer payments," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 1221-1247.
    9. Magdalena Meyer & Dominik W. Melville & Heather J. Baldwin & Kerstin Wilhelm & Evans Ewald Nkrumah & Ebenezer K. Badu & Samuel Kingsley Oppong & Nina Schwensow & Adam Stow & Peter Vallo & Victor M. Co, 2024. "Bat species assemblage predicts coronavirus prevalence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Serge Morand & Sathaporn Jittapalapong & Yupin Suputtamongkol & Mohd Tajuddin Abdullah & Tan Boon Huan, 2014. "Infectious Diseases and Their Outbreaks in Asia-Pacific: Biodiversity and Its Regulation Loss Matter," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    11. Reaser, Jamie & Tabor, Gary M. & Becker, Daniel & Muruthi, Philip & Witt, Arne & Woodley, Stephen J. & Ruiz-Aravena, Manuel & Patz, Jonathan Alan MD, MPH & Hickey, Valerie & Hudson, Peter, 2020. "Land use-induced spillover: priority actions for protected and conserved area managers," EcoEvoRxiv bmfhw, Center for Open Science.
    12. Wang, Hsiao-Hsuan & Grant, W.E. & Teel, P.D. & Hamer, S.A., 2016. "Tick-borne infectious agents in nature: Simulated effects of changes in host density on spatial-temporal prevalence of infected ticks," Ecological Modelling, Elsevier, vol. 323(C), pages 77-86.
    13. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Quiñoá-Piñeiro, Lara & Pérez-Pico, Ada M., 2022. "US biopharmaceutical companies' stock market reaction to the COVID-19 pandemic. Understanding the concept of the ‘paradoxical spiral’ from a sustainability perspective," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    14. Serge Morand & Sathaporn Jittapalapong, 2016. "Infectious Diseases and Their Outbreaks in Asia-Pacific: Biodiversity and Its Regulation Loss Matter," Working Papers id:10125, eSocialSciences.
    15. Ilan Noy & Nguyen Doan & Benno Ferrarini & Donghyun Park, 2019. "Measuring the Economic Risk of Epidemics," CESifo Working Paper Series 8016, CESifo.
    16. Renata L. Muylaert & David A. Wilkinson & Tigga Kingston & Paolo D’Odorico & Maria Cristina Rulli & Nikolas Galli & Reju Sam John & Phillip Alviola & David T. S. Hayman, 2023. "Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Tinggui Chen & Hui Wang, 2022. "Consumers' purchase intention of wild freshwater fish during the COVID‐19 pandemic," Agribusiness, John Wiley & Sons, Ltd., vol. 38(4), pages 832-849, October.
    18. Xinyuan Cui & Kewei Fan & Xianghui Liang & Wenjie Gong & Wu Chen & Biao He & Xiaoyuan Chen & Hai Wang & Xiao Wang & Ping Zhang & Xingbang Lu & Rujian Chen & Kaixiong Lin & Jiameng Liu & Junqiong Zhai , 2023. "Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Shyamsundar, Priya & Sauls, Laura Aileen & Cheek, Jennifer Zavaleta & Sullivan-Wiley, Kira & Erbaugh, J.T. & Krishnapriya, P.P., 2021. "Global forces of change: Implications for forest-poverty dynamics," Forest Policy and Economics, Elsevier, vol. 133(C).
    20. Rivera-Ferre, Marta G. & López-i-Gelats, Feliu & Ravera, Federica & Oteros-Rozas, Elisa & di Masso, Marina & Binimelis, Rosa & El Bilali, Hamid, 2021. "The two-way relationship between food systems and the COVID19 pandemic: causes and consequences," Agricultural Systems, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5307-:d:551426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.