IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/halshs-03038974.html

Prevention and Mitigation of Epidemics: Biodiversity Conservation and Confinement Policies

Author

Listed:
  • Emmanuelle Augeraud-Véron

    (GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

  • Giorgio Fabbri

    (GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes)

  • Katheline Schubert

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

This paper presents a first model integrating the relation between biodiversity loss and zoonotic pandemic risks in a general equilibrium dynamic economic set-up. The occurrence of pandemics is modeled as Poissonian leaps in economic variables. The planner can intervene in the economic and epidemiological dynamics in two ways: first (prevention), by deciding to conserve a greater quantity of biodiversity to decrease the probability of a pandemic occurring, and second (mitigation), by reducing the death toll through a lockdown policy, with the collateral effect of affecting negatively labor productivity. The policy is evaluated using a social welfare function embodying society's risk aversion, aversion to fluctuations, degree of impatience and altruism towards future generations. The model is explicitly solved and the optimal policy described. The dependence of the optimal policy on natural, productivity and preference parameters is discussed. In particular the optimal lockdown is more severe in societies valuing more human life, and the optimal biodiversity conservation is larger for more "forward looking" societies, with a small discount rate and a high degree of altruism towards future generations. Moreover, societies accepting a large welfare loss to mitigate the pandemics are also societies doing a lot of prevention. After calibrating the model with COVID-19 pandemic data we compare the mitigation efforts predicted by the model with those of the recent literature and we study the optimal prevention–mitigation policy mix.

Suggested Citation

  • Emmanuelle Augeraud-Véron & Giorgio Fabbri & Katheline Schubert, 2021. "Prevention and Mitigation of Epidemics: Biodiversity Conservation and Confinement Policies," PSE-Ecole d'économie de Paris (Postprint) halshs-03038974, HAL.
  • Handle: RePEc:hal:pseptp:halshs-03038974
    DOI: 10.1016/j.jmateco.2021.102484
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03038974v2
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-03038974v2/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jmateco.2021.102484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Brock & Anastasios Xepapadeas, 2022. "Emerging infectious diseases and the economy: climate change, natural world preservation, and containment policies," DEOS Working Papers 2208, Athens University of Economics and Business.
    2. Marion Davin & Mouez Fodha & Thomas Seegmuller, 2023. "Environment, public debt, and epidemics," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(6), pages 1270-1303, December.
    3. Marion Davin & Mouez Fodha & Thomas Seegmuller, 2021. "Environment, public debt and epidemics," AMSE Working Papers 2128, Aix-Marseille School of Economics, France.
    4. William Brock & Anastasios Xepapadeas, 2025. "Land Use, Climate Change and the Emergence of Infectious Diseases: A Synthesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 88(3), pages 795-854, March.
    5. Boucekkine, Raouf & Chakraborty, Shankha & Goenka, Aditya & Liu, Lin, 2024. "Economic epidemiological modelling: A progress report," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    6. Raouf Boucekkine & Shankha Chakraborty & Aditya Goenka & Lin Liu, 2024. "A Brief Tour of Economic Epidemiology Modelling," LIDAM Discussion Papers IRES 2024002, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    7. William Brock & Anastasios Xepapadeas, 2023. "Natural world preservation and infectious diseases: Land-use, climate change and innovation," DEOS Working Papers 2319, Athens University of Economics and Business.
    8. William Brock & Anastasios Xepapadeas, 2022. "Climate Change, Natural World Preservation and the Emergence and Containment of Infectious Diseases," DEOS Working Papers 2232, Athens University of Economics and Business.
    9. Barbier, Edward B., 2021. "Habitat loss and the risk of disease outbreak," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:halshs-03038974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.