IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2064-d499442.html
   My bibliography  Save this article

A Hesitant Fuzzy Combined Compromise Solution Framework-Based on Discrimination Measure for Ranking Sustainable Third-Party Reverse Logistic Providers

Author

Listed:
  • Arunodaya Raj Mishra

    (Department of Mathematics, Government College, Satna, Jaitwara 485221, Madhya Pradesh, India)

  • Pratibha Rani

    (Department of Mathematics, National Institute of Technology, Warangal 506004, Telangana, India)

  • Raghunathan Krishankumar

    (Department of Computing, Sastra University, Thanjavur 613401, Tamil Nadu, India)

  • Edmundas Kazimieras Zavadskas

    (Institute of Sustainable Construction, Vilnius Gediminas Technical University, Sauletekio Ave. 11, LT-10223 Vilnius, Lithuania)

  • Fausto Cavallaro

    (Department of Economics, University of Molise, Via De Sanctis, 86100 Campobasso, Italy)

  • Kattur S. Ravichandran

    (Department of Computing, Sastra University, Thanjavur 613401, Tamil Nadu, India
    Administrative Area, Rajiv Gandhi National Institute of Youth Development, Sriperumbudur 602105, Tamil Nadu, India)

Abstract

Customers’ pressure, social responsibility, and government regulations have motivated the enterprises to consider the reverse logistics (RL) in their operations. Recently, companies frequently outsource their RL practices to third-party reverse logistics providers (3PRLPs) to concentrate on their primary concern and diminish costs. However, to select the suitable 3PRLP candidate requires a multi-criteria decision making (MCDM) process involving uncertainty owing to the presence of many associated aspects. In order to choose the most appropriate sustainable 3PRLP (S3PRLP), we introduce a hybrid approach based on the classical Combined Compromise Solution (CoCoSo) method and propose a discrimination measure within the context of hesitant fuzzy sets (HFSs). This approach offers a new process based on the discrimination measure for evaluating the criteria weights. The efficiency and practicability of the present approach are numerically demonstrated by solving an illustrative case study of S3PRLPs selection under a hesitant fuzzy environment. Moreover, sensitivity and comparative studies are presented to highlight the robustness and strength of the introduced methodology. The result of this work concludes that the introduced methodology can recommend a more feasible performance when facing with determinate and inconsistent knowledge and qualitative data.

Suggested Citation

  • Arunodaya Raj Mishra & Pratibha Rani & Raghunathan Krishankumar & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Kattur S. Ravichandran, 2021. "A Hesitant Fuzzy Combined Compromise Solution Framework-Based on Discrimination Measure for Ranking Sustainable Third-Party Reverse Logistic Providers," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2064-:d:499442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Govindan, Kannan & Kadziński, Miłosz & Ehling, Ronja & Miebs, Grzegorz, 2019. "Selection of a sustainable third-party reverse logistics provider based on the robustness analysis of an outranking graph kernel conducted with ELECTRE I and SMAA," Omega, Elsevier, vol. 85(C), pages 1-15.
    2. Song-Man Wu & Hu-Chen Liu & Li-En Wang, 2017. "Hesitant fuzzy integrated MCDM approach for quality function deployment: a case study in electric vehicle," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4436-4449, August.
    3. Lan, Jibin & Jin, Ruifang & Zheng, Zhaoyi & Hu, Mingming, 2017. "Priority degrees for hesitant fuzzy sets: Application to multiple attribute decision making," Operations Research Perspectives, Elsevier, vol. 4(C), pages 67-73.
    4. Xiaolu Zhang & Ting Su, 2020. "The Dominance Degree-Based Heterogeneous Linguistic Decision-Making Technique for Sustainable 3PRLP Selection," Complexity, Hindawi, vol. 2020, pages 1-18, April.
    5. Junhua Hu & Xiaolong Zhang & Xiaohong Chen & Yongmei Liu, 2016. "Hesitant fuzzy information measures and their applications in multi-criteria decision making," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(1), pages 62-76, January.
    6. Ayşegül Tuş & Esra Aytaç Adalı, 2019. "The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 528-538, June.
    7. Mousavi, M. & Gitinavard, H. & Mousavi, S.M., 2017. "A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 774-787.
    8. Morteza Yazdani & Pascale Zaraté & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2019. "A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems," Post-Print hal-02879091, HAL.
    9. Meimei Xia & Zeshui Xu & Na Chen, 2013. "Some Hesitant Fuzzy Aggregation Operators with Their Application in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(2), pages 259-279, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sayyid Ali Banihashemi & Mohammad Khalilzadeh & Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene, 2021. "Investigating the Environmental Impacts of Construction Projects in Time-Cost Trade-Off Project Scheduling Problems with CoCoSo Multi-Criteria Decision-Making Method," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    2. Mishra, Arunodaya Raj & Mardani, Abbas & Rani, Pratibha & Kamyab, Hesam & Alrasheedi, Melfi, 2021. "A new intuitionistic fuzzy combinative distance-based assessment framework to assess low-carbon sustainable suppliers in the maritime sector," Energy, Elsevier, vol. 237(C).
    3. Harshitha Urs Ajjipura Shankar & Udaya Kumara Kodipalya Nanjappa & M. D. Alsulami & Ballajja C. Prasannakumara, 2022. "A Fuzzy AHP-Fuzzy TOPSIS Urged Baseline Aid for Execution Amendment of an Online Food Delivery Affability," Mathematics, MDPI, vol. 10(16), pages 1-24, August.
    4. Haolun Wang & Faming Zhang & Kifayat Ullah, 2022. "Waste Clothing Recycling Channel Selection Using a CoCoSo-D Method Based on Sine Trigonometric Interaction Operational Laws with Pythagorean Fuzzy Information," Energies, MDPI, vol. 15(6), pages 1-28, March.
    5. Haolun Wang, 2022. "Sustainable Circular Supplier Selection in the Power Battery Industry Using a Linguistic T-Spherical Fuzzy MAGDM Model Based on the Improved ARAS Method," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
    6. Sindhwani, Rahul & Singh, Punj Lata & Behl, Abhishek & Afridi, Mohd. Shayan & Sammanit, Debaroti & Tiwari, Aviral Kumar, 2022. "Modeling the critical success factors of implementing net zero emission (NZE) and promoting resilience and social value creation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Li Bai & F. Javier Sendra Garcia & Arunodaya Raj Mishra, 2022. "RETRACTED ARTICLE: Adoption of the sustainable circular supply chain under disruptions risk in manufacturing industry using an integrated fuzzy decision-making approach," Operations Management Research, Springer, vol. 15(3), pages 743-759, December.
    8. Sindhwani, Rahul & Afridi, Shayan & Kumar, Anil & Banaitis, Audrius & Luthra, Sunil & Singh, Punj Lata, 2022. "Can industry 5.0 revolutionize the wave of resilience and social value creation? A multi-criteria framework to analyze enablers," Technology in Society, Elsevier, vol. 68(C).
    9. Pratibha Rani & Jabir Ali & Raghunathan Krishankumar & Arunodaya Raj Mishra & Fausto Cavallaro & Kattur S. Ravichandran, 2021. "An Integrated Single-Valued Neutrosophic Combined Compromise Solution Methodology for Renewable Energy Resource Selection Problem," Energies, MDPI, vol. 14(15), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palash Dutta & Rupjit Saikia, 2020. "A Decision-making Approach for Choosing a Reliable Product under the Hesitant Fuzzy Environment via a Novel Distance Measure," Vikalpa: The Journal for Decision Makers, , vol. 45(3), pages 147-159, September.
    2. Pratibha Rani & Jabir Ali & Raghunathan Krishankumar & Arunodaya Raj Mishra & Fausto Cavallaro & Kattur S. Ravichandran, 2021. "An Integrated Single-Valued Neutrosophic Combined Compromise Solution Methodology for Renewable Energy Resource Selection Problem," Energies, MDPI, vol. 14(15), pages 1-23, July.
    3. Su, Dan & Zhang, Lijun & Peng, Hua & Saeidi, Parvaneh & Tirkolaee, Erfan Babaee, 2023. "Technical challenges of blockchain technology for sustainable manufacturing paradigm in Industry 4.0 era using a fuzzy decision support system," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    4. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    5. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    6. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    7. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    8. Noori, Amir & Bonakdari, Hossein & Salimi, Amir Hossein & Gharabaghi, Bahram, 2021. "A group Multi-Criteria Decision-Making method for water supply choice optimization," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    9. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    10. Mi Jung Son & Jin Han Park & Ka Hyun Ko, 2019. "Some Hesitant Fuzzy Hamacher Power-Aggregation Operators for Multiple-Attribute Decision-Making," Mathematics, MDPI, vol. 7(7), pages 1-33, July.
    11. Raghunathan Krishankumar & Arunodaya Raj Mishra & Kattur Soundarapandian Ravichandran & Xindong Peng & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Abbas Mardani, 2020. "A Group Decision Framework for Renewable Energy Source Selection under Interval-Valued Probabilistic linguistic Term Set," Energies, MDPI, vol. 13(4), pages 1-25, February.
    12. Sharma, Varun & Vijayaraghavan, T.A.S. & Raghu Ram, Tata L., 2023. "Resolving operational paradox of sustainable supply chain: A decision framework approach," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    13. Nandi, Sandip & Granata, Giuseppe & Jana, Subrata & Ghorui, Neha & Mondal, Sankar Prasad & Bhaumik, Moumita, 2023. "Evaluation of the treatment options for COVID-19 patients using generalized hesitant fuzzy- multi criteria decision making techniques," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    14. Zhi Wen & Huchang Liao & Ruxue Ren & Chunguang Bai & Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene & Abdullah Al-Barakati, 2019. "Cold Chain Logistics Management of Medicine with an Integrated Multi-Criteria Decision-Making Method," IJERPH, MDPI, vol. 16(23), pages 1-21, December.
    15. Abdel-Basset, Mohamed & Gamal, Abduallah & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study," Renewable Energy, Elsevier, vol. 168(C), pages 1073-1095.
    16. Mehmet Ozcalici, 2023. "Integrating queue theory and multi-criteria decision-making tools for selecting roll-over car washing machine," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(2), pages 99-119.
    17. Chao Song & Jian-Qiang Wang & Jun-Bo Li, 2020. "New Framework for Quality Function Deployment Using Linguistic Z-Numbers," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    18. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2015. "Generalized analytic network process," European Journal of Operational Research, Elsevier, vol. 244(1), pages 277-288.
    19. Željko Stević & Dillip Kumar Das & Rade Tešić & Marijo Vidas & Dragan Vojinović, 2022. "Objective Criticism and Negative Conclusions on Using the Fuzzy SWARA Method in Multi-Criteria Decision Making," Mathematics, MDPI, vol. 10(4), pages 1-19, February.
    20. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2064-:d:499442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.