IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1886-d496534.html
   My bibliography  Save this article

An Analysis of Renewable Energy Usage by Mobile Data Network Operators

Author

Listed:
  • Sheraz Syed

    (Department of Software Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan)

  • Asad Arfeen

    (National Center for Cyber Security, Department of Computer and Information Systems Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan)

  • Riaz Uddin

    (National Center for Robotics and Automation, Department of Electrical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan)

  • Umaima Haider

    (Enterprise Computing Research Lab, University of East London, London E16 2RG, UK)

Abstract

The exponential growth in mobile data traffic has resulted in massive energy usage and therefore has increased the carbon footprint of the Internet. Data network operators have taken significant initiatives to mitigate the negative impacts of carbon emissions (CE). Renewable Energy Sources (RES) have emerged as the most promising way to reduce carbon emissions. This article presents the role of renewable energy (RE) in minimizing the environmental impacts of mobile data communications for achieving a greener environment. In this article, an analysis of some selected mobile data network operators’ energy consumption (EC) has been presented. Based on the current statistics of different mobile network operators, the future energy values are estimated. These estimations of carbon emissions are based on the predicted data traffic in the coming years and the percentage consumption of energy from renewable sources by the network operators. The analysis presented in this article would be helpful to develop and implement energy policies that accelerate the process of increasing the renewable shares in total energy requirements. Incrementing the share of renewable energy in total energy requirements can be a way forward to reach Goal 7 of the United Nations Sustainable Development Goals (SDGs).

Suggested Citation

  • Sheraz Syed & Asad Arfeen & Riaz Uddin & Umaima Haider, 2021. "An Analysis of Renewable Energy Usage by Mobile Data Network Operators," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1886-:d:496534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Pasquale, Stefano, 2019. "Fuel cell based hybrid renewable energy systems for off-grid telecom stations: Data analysis and system optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Tsai, Sang-Bing & Xue, Youzhi & Zhang, Jianyu & Chen, Quan & Liu, Yubin & Zhou, Jie & Dong, Weiwei, 2017. "Models for forecasting growth trends in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1169-1178.
    3. Faran Ahmed & Muhammad Naeem & Muhammad Iqbal, 2017. "ICT and renewable energy: a way forward to the next generation telecom base stations," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(1), pages 43-56, January.
    4. Radonjič, Gregor & Tompa, Saša, 2018. "Carbon footprint calculation in telecommunications companies – The importance and relevance of scope 3 greenhouse gases emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 361-375.
    5. Cordiner, S. & Mulone, V. & Giordani, A. & Savino, M. & Tomarchio, G. & Malkow, T. & Tsotridis, G. & Pilenga, A. & Karlsen, M.L. & Jensen, J., 2017. "Fuel cell based Hybrid Renewable Energy Systems for off-grid telecom stations: Data analysis from on field demonstration tests," Applied Energy, Elsevier, vol. 192(C), pages 508-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed W. Baidas & Rola W. Hasaneya & Rashad M. Kamel & Sultan Sh. Alanzi, 2021. "Solar-Powered Cellular Base Stations in Kuwait: A Case Study," Energies, MDPI, vol. 14(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2024. "Sustainable and self-sufficient social home through a combined PV‑hydrogen pilot," Applied Energy, Elsevier, vol. 363(C).
    3. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    4. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60, February.
    5. LIU Xiangling & Md Qamruzzaman, 2024. "The role of ICT investment, digital financial inclusion, and environmental tax in promoting sustainable energy development in the MENA region: Evidences with Dynamic Common Correlated Effects (DCE) an," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-30, May.
    6. Talan, Amogh & Rao, Amar & Sharma, Gagan Deep & Apostu, Simona-Andreea & Abbas, Shujaat, 2023. "Transition towards clean energy consumption in G7: Can financial sector, ICT and democracy help?," Resources Policy, Elsevier, vol. 82(C).
    7. Niranjan Rao Deevela & Tara C. Kandpal & Bhim Singh, 2024. "A review of renewable energy based power supply options for telecom towers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 2897-2964, February.
    8. Sema Üstgörül & Bülent Akkaya & Maria Palazzo & Alessandra Micozzi, 2024. "Development and Validation of Carbon Footprint Awareness Scale for Boosting Sustainable Circular Economy," Sustainability, MDPI, vol. 16(18), pages 1-16, September.
    9. Doan, Nguyen & Nguyen, Canh Phuc, 2025. "Can e-government facilitate the deployment of renewable energy?," Energy, Elsevier, vol. 318(C).
    10. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    11. Jing Wang & Yubing Xu, 2022. "How Does Digitalization Affect Haze Pollution? The Mediating Role of Energy Consumption," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    12. Long, Han & Prasad, Biman & Krishna, Victor & Tang, Kai & Chang, Chun-Ping, 2024. "Understanding the key determinants of Fiji's renewable energy," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1144-1157.
    13. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    14. Amole, Abraham Olatide & Owosibo, Rachael Abiola & Adewuyi, Oludamilare Bode & Oladipo, Stephen & Imarhiagbe, Nosagiagbon Owomano, 2024. "Comparative analysis of control strategies for solar photovoltaic/diesel power system for stand-alone applications," Renewable Energy, Elsevier, vol. 226(C).
    15. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    16. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    17. Wang, Linhui & Chen, Qi & Dong, Zhiqing & Cheng, Lu, 2024. "The role of industrial intelligence in peaking carbon emissions in China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    18. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    19. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Pasquale, Stefano, 2019. "Fuel cell based hybrid renewable energy systems for off-grid telecom stations: Data analysis and system optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1886-:d:496534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.