IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1317-d487886.html
   My bibliography  Save this article

A Permissioned Blockchain-Based Energy Management System for Renewable Energy Microgrids

Author

Listed:
  • Longze Wang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Shucen Jiao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Yu Xie

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Saif Mubaarak

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Delong Zhang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Jinxin Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Siyu Jiang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Yan Zhang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, Beijing 102206, China)

  • Meicheng Li

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China)

Abstract

Peer-to-peer (P2P) energy management is one of the most viable solutions to incentivize prosumers in renewable energy microgrids. As the application of blockchain expends from the finance field to energy field, blockchain technology provides a new opportunity for distributed energy systems. However, a distributed energy system based on blockchains allows any node in the whole network to read data. In many application scenarios, user privacy cannot be effectively protected, and there is a security problem that the attack cannot be traced. In this paper, we propose an energy management mode based on a permissioned blockchain for a renewable energy microgrid. The novel permissioned blockchain framework uses entity mapping with a unique identity for each enterprise, natural person, or device, in order to avoid ineligible participants to join the microgrid. Each peer entity keeps the transaction information index of the whole network, but only keeps its own specific transaction information, so they can retrieve the transaction information of other peer entities but cannot obtain the details without permission. Moreover, this model could avoid communication delays and promote plug-and-play due to the distributed nature of the permissioned blockchain. The performance of the proposed method is evaluated with a demonstration program which is designed and deployed on a Hyperledger Fabric permissioned blockchain. Simulation results show the feasibility of the proposed method, and the model is conducive to the protection privacy and P2P energy management for decentralized energy systems.

Suggested Citation

  • Longze Wang & Shucen Jiao & Yu Xie & Saif Mubaarak & Delong Zhang & Jinxin Liu & Siyu Jiang & Yan Zhang & Meicheng Li, 2021. "A Permissioned Blockchain-Based Energy Management System for Renewable Energy Microgrids," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1317-:d:487886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    2. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    3. Yunjun Yu & Yanghui Guo & Weidong Min & Fanpeng Zeng, 2019. "Trusted Transactions in Micro-Grid Based on Blockchain," Energies, MDPI, vol. 12(10), pages 1-16, May.
    4. Michael J. Fell & Alexandra Schneiders & David Shipworth, 2019. "Consumer Demand for Blockchain-Enabled Peer-to-Peer Electricity Trading in the United Kingdom: An Online Survey Experiment," Energies, MDPI, vol. 12(20), pages 1-25, October.
    5. Alvarez-Mendoza, Fernanda & Bacher, Peder & Madsen, Henrik & Angeles-Camacho, César, 2017. "Stochastic model of wind-fuel cell for a semi-dispatchable power generation," Applied Energy, Elsevier, vol. 193(C), pages 139-148.
    6. Felipe Condon Silva & Mohamed A. Ahmed & José Manuel Martínez & Young-Chon Kim, 2019. "Design and Implementation of a Blockchain-Based Energy Trading Platform for Electric Vehicles in Smart Campus Parking Lots," Energies, MDPI, vol. 12(24), pages 1-25, December.
    7. Shengmin Tan & Xu Wang & Chuanwen Jiang, 2019. "Privacy-Preserving Energy Scheduling for ESCOs Based on Energy Blockchain Network," Energies, MDPI, vol. 12(8), pages 1-16, April.
    8. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    9. Oscar Núñez-Mata & Rodrigo Palma-Behnke & Felipe Valencia & Patricio Mendoza-Araya & Guillermo Jiménez-Estévez, 2018. "Adaptive Protection System for Microgrids Based on a Robust Optimization Strategy," Energies, MDPI, vol. 11(2), pages 1-16, February.
    10. Zheng Che & Yu Wang & Juanjuan Zhao & Yan Qiang & Yue Ma & Jihua Liu, 2019. "A Distributed Energy Trading Authentication Mechanism Based on a Consortium Blockchain," Energies, MDPI, vol. 12(15), pages 1-21, July.
    11. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    12. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    13. Meng, Lexuan & Sanseverino, Eleonora Riva & Luna, Adriana & Dragicevic, Tomislav & Vasquez, Juan C. & Guerrero, Josep M., 2016. "Microgrid supervisory controllers and energy management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1263-1273.
    14. Kirubakaran, A. & Jain, Shailendra & Nema, R.K., 2009. "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2430-2440, December.
    15. Prinsloo, Gerro & Mammoli, Andrea & Dobson, Robert, 2017. "Customer domain supply and load coordination: A case for smart villages and transactive control in rural off-grid microgrids," Energy, Elsevier, vol. 135(C), pages 430-441.
    16. Chenjun Sun & Zengqiang Mi & Hui Ren & Zhipeng Jing & Jinling Lu & David Watts, 2019. "Multi-Dimensional Indexes for the Sustainability Evaluation of an Active Distribution Network," Energies, MDPI, vol. 12(3), pages 1-24, January.
    17. Wenting Zhao & Jun Lv & Xilong Yao & Juanjuan Zhao & Zhixin Jin & Yan Qiang & Zheng Che & Chunwu Wei, 2019. "Consortium Blockchain-Based Microgrid Market Transaction Research," Energies, MDPI, vol. 12(20), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrdad Aslani & Hamed Hashemi-Dezaki & Abbas Ketabi, 2021. "Reliability Evaluation of Smart Microgrids Considering Cyber Failures and Disturbances under Various Cyber Network Topologies and Distributed Generation’s Scenarios," Sustainability, MDPI, vol. 13(10), pages 1-30, May.
    2. Nan Jiang & Qi Han & Guohua Zhu, 2023. "A Three-Dimensional Analytical Framework: Textual Analysis and Comparison of Chinese and US Energy Blockchain Policies," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    3. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    4. Prince Waqas Khan & Yung-Cheol Byun, 2021. "Blockchain-Based Peer-to-Peer Energy Trading and Charging Payment System for Electric Vehicles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    5. Evgenia Kapassa & Marinos Themistocleous & Klitos Christodoulou & Elias Iosif, 2021. "Blockchain Application in Internet of Vehicles: Challenges, Contributions and Current Limitations," Future Internet, MDPI, vol. 13(12), pages 1-32, December.
    6. Annegret Henninger & Atefeh Mashatan, 2022. "Distributed Renewable Energy Management: A Gap Analysis and Proposed Blockchain-Based Architecture," JRFM, MDPI, vol. 15(5), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    3. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).
    5. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    6. Ahl, Amanda & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2019. "Review of blockchain-based distributed energy: Implications for institutional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 200-211.
    7. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    8. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    9. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    10. Yeray Mezquita & Ana Belén Gil-González & Angel Martín del Rey & Javier Prieto & Juan Manuel Corchado, 2022. "Towards a Blockchain-Based Peer-to-Peer Energy Marketplace," Energies, MDPI, vol. 15(9), pages 1-20, April.
    11. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    12. Kirli, Desen & Couraud, Benoit & Robu, Valentin & Salgado-Bravo, Marcelo & Norbu, Sonam & Andoni, Merlinda & Antonopoulos, Ioannis & Negrete-Pincetic, Matias & Flynn, David & Kiprakis, Aristides, 2022. "Smart contracts in energy systems: A systematic review of fundamental approaches and implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Rodrigues, Stefane Dias & Garcia, Vinicius Jacques, 2023. "Transactive energy in microgrid communities: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    14. Wang, Longze & Jiao, Shucen & Xie, Yu & Xia, Shiwei & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2022. "Two-way dynamic pricing mechanism of hydrogen filling stations in electric-hydrogen coupling system enhanced by blockchain," Energy, Elsevier, vol. 239(PC).
    15. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    16. Zhu, Shuai & Song, Malin & Lim, Ming Kim & Wang, Jianlin & Zhao, Jiajia, 2020. "The development of energy blockchain and its implications for China's energy sector," Resources Policy, Elsevier, vol. 66(C).
    17. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    18. Hou, Jianchao & Wang, Che & Luo, Sai, 2020. "How to improve the competiveness of distributed energy resources in China with blockchain technology," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    20. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1317-:d:487886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.