IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p958-d482702.html
   My bibliography  Save this article

Usage and User Characteristics—Insights from MOIA, Europe’s Largest Ridepooling Service

Author

Listed:
  • Nadine Kostorz

    (Institute for Transport Studies, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

  • Eva Fraedrich

    (MOIA GmbH, Alexanderufer 5, 10117 Berlin, Germany)

  • Martin Kagerbauer

    (Institute for Transport Studies, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

Abstract

New, i.e., shared and digitized, mobility services have been entering urban mobility markets around the globe. Among these new offerings is ridepooling, a mobility solution that bundles requests from passengers with similar routes in real-time and matches them with a vehicle. Ridepooling is quite novel in Germany and knowledge about users, changes in travel behavior, and impacts on the urban traffic system is scarce. To address this gap, we conducted an online survey among users and non-users of MOIA, a German ridepooling provider. Over 12,000 respondents completed the survey. The article presents results on ridepooling users’ characteristics and usage patterns. We found that MOIA users cover all age groups and are multimodal travelers—which leads us to assume that ridepooling enriches mobility portfolios and also serves as an alternative to the private car. MOIA is mostly used occasionally and, in particular, during the evening or the night. A specific focus of the article lies on users with mobility impairments as well as how and by whom ridepooling is used on work-related trips. Both topics are particularly relevant in light of changing travel patterns and transforming urban transport systems towards more sustainability.

Suggested Citation

  • Nadine Kostorz & Eva Fraedrich & Martin Kagerbauer, 2021. "Usage and User Characteristics—Insights from MOIA, Europe’s Largest Ridepooling Service," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:958-:d:482702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jokinen, Jani-Pekka & Sihvola, Teemu & Mladenovic, Milos N., 2019. "Policy lessons from the flexible transport service pilot Kutsuplus in the Helsinki Capital Region," Transport Policy, Elsevier, vol. 76(C), pages 123-133.
    2. Markus Friedrich & Maximilian Hartl & Christoph Magg, 2018. "A modeling approach for matching ridesharing trips within macroscopic travel demand models," Transportation, Springer, vol. 45(6), pages 1639-1653, November.
    3. Alexandra König & Tabea Bonus & Jan Grippenkoven, 2018. "Analyzing Urban Residents’ Appraisal of Ridepooling Service Attributes with Conjoint Analysis," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    4. repec:cdl:itsdav:qt82w2z91j is not listed on IDEAS
    5. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    6. Prateek Bansal & Akanksha Sinha & Rubal Dua & Ricardo Daziano, 2019. "Eliciting Preferences of Ridehailing Users and Drivers: Evidence from the United States," Papers 1904.06695, arXiv.org.
    7. Steg, Linda, 2005. "Car use: lust and must. Instrumental, symbolic and affective motives for car use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 147-162.
    8. Louis A. Merlin, 2019. "Transportation Sustainability Follows From More People in Fewer Vehicles, Not Necessarily Automation," Journal of the American Planning Association, Taylor & Francis Journals, vol. 85(4), pages 501-510, October.
    9. Morsche, Wietse te & La Paix Puello, Lissy & Geurs, Karst T., 2019. "Potential uptake of adaptive transport services: An exploration of service attributes and attitudes," Transport Policy, Elsevier, vol. 84(C), pages 1-11.
    10. Knie, Andreas & Ruhrort, Lisa & Gödde, Jan & Pfaff, Theresa, 2020. "Ride-Pooling-Dienste und ihre Bedeutung für den Verkehr. Nachfragemuster und Nutzungsmotive am Beispiel von "CleverShuttle" - eine Untersuchung auf Grundlage von Buchungsdaten und Kundenbefr," Discussion Papers, Research Group Digital Mobility and Social Differentiation SP III 2020-601, WZB Berlin Social Science Center.
    11. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    12. Becker, Henrik & Balac, Milos & Ciari, Francesco & Axhausen, Kay W., 2020. "Assessing the welfare impacts of Shared Mobility and Mobility as a Service (MaaS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 228-243.
    13. Laura Gebhardt & Mascha Brost & Alexandra König, 2019. "An Inter- and Transdisciplinary Approach to Developing and Testing a New Sustainable Mobility System," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zwick, Felix & Axhausen, Kay W., 2022. "Ride-pooling demand prediction: A spatiotemporal assessment in Germany," Journal of Transport Geography, Elsevier, vol. 100(C).
    2. Ulfia Annette Lenfers & Nima Ahmady-Moghaddam & Daniel Glake & Florian Ocker & Jonathan Ströbele & Thomas Clemen, 2021. "Incorporating Multi-Modal Travel Planning into an Agent-Based Model: A Case Study at the Train Station Kellinghusenstraße in Hamburg," Land, MDPI, vol. 10(11), pages 1-20, November.
    3. Lukas Berthold & Malte Fliedner & Arne Schulz, 2025. "A shift scheduling model for ridepooling services," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(2), pages 349-373, June.
    4. Gödde, Jan & Ruhrort, Lisa & Allert, Viktoria & Scheiner, Joachim, 2023. "User characteristics and spatial correlates of ride-pooling demand – Evidence from Berlin and Munich," Journal of Transport Geography, Elsevier, vol. 109(C).
    5. Burghard, Uta & Scherrer, Aline, 2022. "Sharing vehicles or sharing rides - Psychological factors influencing the acceptance of carsharing and ridepooling in Germany," Energy Policy, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhiyong & Li, Ruimin & Dai, Jingchen, 2022. "Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 206-226.
    2. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    3. Ho, Chinh Q. & Tirachini, Alejandro, 2024. "Mobility-as-a-Service and the role of multimodality in the sustainability of urban mobility in developing and developed countries," Transport Policy, Elsevier, vol. 145(C), pages 161-176.
    4. Mishra, Sushreeta & Mehran, Babak & Sahu, Prasanta K., 2020. "Assessment of delivery models for semi-flexible transit operation in low-demand conditions," Transport Policy, Elsevier, vol. 99(C), pages 275-287.
    5. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    6. Mark Muller & Seri Park & Ross Lee & Brett Fusco & Gonçalo Homem de Almeida Correia, 2021. "Review of Whole System Simulation Methodologies for Assessing Mobility as a Service (MaaS) as an Enabler for Sustainable Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    7. Timmer, Sebastian & Merfeld, Katrin & Henkel, Sven, 2023. "Exploring motivations for multimodal commuting: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    8. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    9. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    10. Anastasia Roukouni & Gonçalo Homem de Almeida Correia, 2020. "Evaluation Methods for the Impacts of Shared Mobility: Classification and Critical Review," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    11. Andres Fielbaum & Sergio Jara-Díaz & Javier Alonso-Mora, 2024. "Beyond the last mile: different spatial strategies to integrate on-demand services into public transport in a simplified city," Public Transport, Springer, vol. 16(3), pages 855-892, October.
    12. Gödde, Jan & Ruhrort, Lisa & Allert, Viktoria & Scheiner, Joachim, 2023. "User characteristics and spatial correlates of ride-pooling demand – Evidence from Berlin and Munich," Journal of Transport Geography, Elsevier, vol. 109(C).
    13. Andres Fielbaum & Maximilian Kronmueller & Javier Alonso-Mora, 2022. "Anticipatory routing methods for an on-demand ridepooling mobility system," Transportation, Springer, vol. 49(6), pages 1921-1962, December.
    14. Baier, Moritz Jon & Sörensen, Leif & Schlüter, Jan Christian, 2024. "How successful is my DRT system? A review of different parameters to consider when developing flexible public transport systems," Transport Policy, Elsevier, vol. 159(C), pages 130-142.
    15. Lei Zhu & Zhouqiao Zhao & Guoyuan Wu, 2021. "Shared Automated Mobility with Demand-Side Cooperation: A Proof-of-Concept Microsimulation Study," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    16. Thomas, Hugh & Cabrera Serrenho, André, 2025. "Can sharing car trips deliver meaningful emissions savings? The case of Great Britain," Applied Energy, Elsevier, vol. 392(C).
    17. Johann Hartleb & Markus Friedrich & Emely Richter, 2022. "Vehicle scheduling for on-demand vehicle fleets in macroscopic travel demand models," Transportation, Springer, vol. 49(4), pages 1133-1155, August.
    18. García-Herrera, Alisson & Basso, Leonardo J. & Tirachini, Alejandro, 2024. "Microeconomic analysis of ridesourcing market regulation policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    19. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    20. Mattauch, Linus & Hepburn, Cameron & Stern, Nicholas, 2018. "Pigou pushes preferences: decarbonisation and endogenous values," INET Oxford Working Papers 2018-16, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:958-:d:482702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.