IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13080-d688267.html
   My bibliography  Save this article

Different Charging Strategies for Electric Vehicle Fleets in Urban Freight Transport

Author

Listed:
  • Bram Kin

    (Sustainable Transport and Logistics Department, Netherlands Organisation for Applied Scientific Research (TNO), 2496 RZ The Hague, The Netherlands
    Research Group Logistics and Alliances, HAN University of Applied Sciences, 6826 CC Arnhem, The Netherlands)

  • Meike Hopman

    (Sustainable Transport and Logistics Department, Netherlands Organisation for Applied Scientific Research (TNO), 2496 RZ The Hague, The Netherlands)

  • Hans Quak

    (Sustainable Transport and Logistics Department, Netherlands Organisation for Applied Scientific Research (TNO), 2496 RZ The Hague, The Netherlands
    Breda University of Applied Sciences (BUas), 4817 JS Breda, The Netherlands)

Abstract

The transition from diesel-driven urban freight transport towards more electric urban freight transport turns out to be challenging in practice. A major concern for transport operators is how to find a reliable charging strategy for a larger electric vehicle fleet that provides flexibility based on different daily mission profiles within that fleet, while also minimizing costs. This contribution assesses the trade-off between a large battery pack and opportunity charging with regard to costs and operational constraints. Based on a case study with 39 electric freight vehicles that have been used by a parcel delivery company and a courier company in daily operations for over a year, various scenarios have been analyzed by means of a TCO analysis. Although a large battery allows for more flexibility in planning, opportunity charging can provide a feasible alternative, especially in the case of varying mission profiles. Additional personnel costs during opportunity charging can be avoided as much as possible by a well-integrated charging strategy, which can be realized by a reservation system that minimizes the risk of occupied charging stations and a dense network of charging stations.

Suggested Citation

  • Bram Kin & Meike Hopman & Hans Quak, 2021. "Different Charging Strategies for Electric Vehicle Fleets in Urban Freight Transport," Sustainability, MDPI, vol. 13(23), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13080-:d:688267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holguín-Veras, José & Kalahasthi, Lokesh & Ramirez-Rios, Diana G., 2021. "Service trip attraction in commercial establishments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Dietmar Göhlich & Kai Nagel & Anne Magdalene Syré & Alexander Grahle & Kai Martins-Turner & Ricardo Ewert & Ricardo Miranda Jahn & Dominic Jefferies, 2021. "Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    3. Dablanc, Laetitia, 2007. "Goods transport in large European cities: Difficult to organize, difficult to modernize," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(3), pages 280-285, March.
    4. Taefi, Tessa T. & Kreutzfeldt, Jochen & Held, Tobias & Fink, Andreas, 2016. "Supporting the adoption of electric vehicles in urban road freight transport – A multi-criteria analysis of policy measures in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 61-79.
    5. Sijing Liu & Jiuping Xu & Xiaoyuan Shi & Guoqi Li & Dinglong Liu, 2018. "Sustainable Distribution Organization Based on the Supply–Demand Coordination in Large Chinese Cities," Sustainability, MDPI, vol. 10(9), pages 1-25, August.
    6. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    7. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    8. Angel Alejandro Juan & Carlos Alberto Mendez & Javier Faulin & Jesica De Armas & Scott Erwin Grasman, 2016. "Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges," Energies, MDPI, vol. 9(2), pages 1-21, January.
    9. Morganti, Eleonora & Browne, Michael, 2018. "Technical and operational obstacles to the adoption of electric vans in France and the UK: An operator perspective," Transport Policy, Elsevier, vol. 63(C), pages 90-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Nunez Munoz & Erica E. F. Ballantyne & David A. Stone, 2023. "Assessing the Economic Impact of Introducing Localised PV Solar Energy Generation and Energy Storage for Fleet Electrification," Energies, MDPI, vol. 16(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
    2. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    3. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    4. Zhangyuan He & Hans-Dietrich Haasis, 2019. "Integration of Urban Freight Innovations: Sustainable Inner-Urban Intermodal Transportation in the Retail/Postal Industry," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    5. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2021. "Electric light commercial vehicles for a cleaner urban goods distribution. Are they cost competitive?," Research in Transportation Economics, Elsevier, vol. 85(C).
    6. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    7. Maria Nunez Munoz & Erica E. F. Ballantyne & David A. Stone, 2023. "Assessing the Economic Impact of Introducing Localised PV Solar Energy Generation and Energy Storage for Fleet Electrification," Energies, MDPI, vol. 16(8), pages 1-27, April.
    8. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    9. Wanjie Hu & Jianjun Dong & Bon-gang Hwang & Rui Ren & Zhilong Chen, 2019. "A Scientometrics Review on City Logistics Literature: Research Trends, Advanced Theory and Practice," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    10. Valerio Gatta & Edoardo Marcucci & Marialisa Nigro & Sergio Maria Patella & Simone Serafini, 2018. "Public Transport-Based Crowdshipping for Sustainable City Logistics: Assessing Economic and Environmental Impacts," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    11. Lukas Hardi & Ulrich Wagner, 2019. "Grocery Delivery or Customer Pickup—Influences on Energy Consumption and CO 2 Emissions in Munich," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    12. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    13. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1-27, June.
    14. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    15. Tannaz Jahaniaghdam & Amir Reza Mamdoohi & Salman Aghidi Kheyrabadi & Mehdi Mehryar & Francesco Ciari, 2023. "Preferences for Alternative Fuel Trucks among International Transport Companies," World, MDPI, vol. 4(4), pages 1-21, November.
    16. Pedro A. P. Dias & Hugo Yoshizaki & Patricia Favero & Jose Geraldo Vidal Vieira, 2019. "Daytime or Overnight Deliveries? Perceptions of Drivers and Retailers in São Paulo City," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    17. Yang, Chao & Chen, Mingyang & Yuan, Quan, 2021. "The geography of freight-related accidents in the era of E-commerce: Evidence from the Los Angeles metropolitan area," Journal of Transport Geography, Elsevier, vol. 92(C).
    18. Daniele Crotti & Elena Maggi, 2023. "Social Responsibility and Urban Consolidation Centres in Sustainable Freight Transport Markets," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 9(2), pages 829-850, July.
    19. Sandrine Ville & Jesus Gonzalez-Feliu & Laetitia Dablanc, 2010. "The limits of public policy intervention in urban logistics: The case of Vicenza (Italy) and lessons for other European cities," Post-Print halshs-00742857, HAL.
    20. Thomas Baudel & Laetitia Dablanc & Penelope Aguiar-Melgarejo & Jean Ashton, 2015. "Optimizing Urban Freight Deliveries: From Designing and Testing a Prototype System to Addressing Real Life Challenges," Post-Print hal-01255153, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13080-:d:688267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.