IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12838-d683432.html
   My bibliography  Save this article

Reward–Penalty Mechanism Based on Daily Energy Consumption for Net-Zero Energy Buildings

Author

Listed:
  • Yang Zhang

    (Department of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Yuehong Lu

    (Department of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Changlong Wang

    (Department of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Zhijia Huang

    (Department of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

  • Tao Lv

    (Department of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China)

Abstract

Net-zero energy buildings (ZEB/NZEB) have been greatly encouraged and are considered to be a promising approach for energy conservation as well as environmental protection. However, a lack of incentive mechanisms can hinder the fast development and application of ZEB. This study thus focuses on the design of a daily reward–penalty mechanism (RPM) by considering the performance of the building, aiming to enable a lower penalty cost for the building where there is a better match between energy consumption and energy generation. The impact of the degree of freedom of the building load (k) is investigated on building performance based on a single-family house located in Shanghai city, China. It is observed that a higher value of k is preferred since the building users can adjust its energy consumption profile to better match with its energy generation. A higher k value enables lower annual energy consumption, lower penalty cost, better stability, and an average daily zero energy level of around 1.0. In addition, four quadratic fit curves are derived to describe the relationship between building performance (i.e., annual energy consumption, the average daily zero energy level, stability, and annual penalty cost) and the degree of freedom. Meanwhile, the uncertainty of ZEB performance is quantified, which provides flexibility for building users in selecting the appropriate degree of freedom.

Suggested Citation

  • Yang Zhang & Yuehong Lu & Changlong Wang & Zhijia Huang & Tao Lv, 2021. "Reward–Penalty Mechanism Based on Daily Energy Consumption for Net-Zero Energy Buildings," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12838-:d:683432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tantisattayakul, Thanapol & Kanchanapiya, Premrudee, 2017. "Financial measures for promoting residential rooftop photovoltaics under a feed-in tariff framework in Thailand," Energy Policy, Elsevier, vol. 109(C), pages 260-269.
    2. Janjic, Aleksandar & Velimirovic, Lazar Z. & Vranic, Petar, 2021. "Designing an electricity distribution reward-penalty scheme based on spatial reliability statistics," Utilities Policy, Elsevier, vol. 70(C).
    3. Lu, Yuehong & Wang, Shengwei & Sun, Yongjun & Yan, Chengchu, 2015. "Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming," Applied Energy, Elsevier, vol. 147(C), pages 49-58.
    4. Sun, Yongjun & Huang, Gongsheng & Xu, Xinhua & Lai, Alvin Chi-Keung, 2018. "Building-group-level performance evaluations of net zero energy buildings with non-collaborative controls," Applied Energy, Elsevier, vol. 212(C), pages 565-576.
    5. Pacudan, Romeo, 2018. "Feed-in tariff vs incentivized self-consumption: Options for residential solar PV policy in Brunei Darussalam," Renewable Energy, Elsevier, vol. 122(C), pages 362-374.
    6. Hitaj, Claudia & Löschel, Andreas, 2019. "The impact of a feed-in tariff on wind power development in Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 18-35.
    7. Wu, Wei & Skye, Harrison M. & Domanski, Piotr A., 2018. "Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings," Applied Energy, Elsevier, vol. 212(C), pages 577-591.
    8. O'Shaughnessy, Eric & Heeter, Jenny & Shah, Chandra & Koebrich, Sam, 2021. "Corporate acceleration of the renewable energy transition and implications for electric grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    10. Ye, Liang-Cheng & Rodrigues, João F.D. & Lin, Hai Xiang, 2017. "Analysis of feed-in tariff policies for solar photovoltaic in China 2011–2016," Applied Energy, Elsevier, vol. 203(C), pages 496-505.
    11. Schmidt, J. & Lehecka, G. & Gass, V. & Schmid, E., 2013. "Where the wind blows: Assessing the effect of fixed and premium based feed-in tariffs on the spatial diversification of wind turbines," Energy Economics, Elsevier, vol. 40(C), pages 269-276.
    12. Lu, Yuehong & Zhang, Xiao-Ping & Li, Jianing & Huang, Zhijia & Wang, Changlong & Luo, Liang, 2019. "Design of a reward-penalty cost for the promotion of net-zero energy buildings," Energy, Elsevier, vol. 180(C), pages 36-49.
    13. Shahbaz, Muhammad & Topcu, Betül Altay & Sarıgül, Sevgi Sümerli & Vo, Xuan Vinh, 2021. "The effect of financial development on renewable energy demand: The case of developing countries," Renewable Energy, Elsevier, vol. 178(C), pages 1370-1380.
    14. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yuehong & Zhang, Xiao-Ping & Huang, Zhijia & Lu, Jinli & Wang, Dong, 2019. "Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings," Applied Energy, Elsevier, vol. 235(C), pages 106-116.
    2. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
    3. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    4. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).
    5. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    6. Coria, Gustavo & Penizzotto, Franco & Pringles, Rolando, 2019. "Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors," Renewable Energy, Elsevier, vol. 133(C), pages 1167-1177.
    7. Du, Yimeng & Takeuchi, Kenji, 2020. "Does a small difference make a difference? Impact of feed-in tariff on renewable power generation in China," Energy Economics, Elsevier, vol. 87(C).
    8. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2019. "Optimal design of renewable energy solution sets for net zero energy buildings," Energy, Elsevier, vol. 179(C), pages 1155-1175.
    9. Huang, Pei & Sun, Yongjun, 2019. "A robust control of nZEBs for performance optimization at cluster level under demand prediction uncertainty," Renewable Energy, Elsevier, vol. 134(C), pages 215-227.
    10. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    11. Yuehong Lu & Mohammed Alghassab & Manuel S. Alvarez-Alvarado & Hasan Gunduz & Zafar A. Khan & Muhammad Imran, 2020. "Optimal Distribution of Renewable Energy Systems Considering Aging and Long-Term Weather Effect in Net-Zero Energy Building Design," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    12. Pei-Hsuan Tsai & Chih-Jou Chen & Ho-Chin Yang, 2021. "Using Porter’s Diamond Model to Assess the Competitiveness of Taiwan’s Solar Photovoltaic Industry," SAGE Open, , vol. 11(1), pages 21582440209, January.
    13. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    14. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    15. Bjørnebye, Henrik & Hagem, Cathrine & Lind, Arne, 2018. "Optimal location of renewable power," Energy, Elsevier, vol. 147(C), pages 1203-1215.
    16. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    17. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    18. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
    19. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    20. Lu, Yuehong & Zhang, Xiao-Ping & Li, Jianing & Huang, Zhijia & Wang, Changlong & Luo, Liang, 2019. "Design of a reward-penalty cost for the promotion of net-zero energy buildings," Energy, Elsevier, vol. 180(C), pages 36-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12838-:d:683432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.