IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10254-d635132.html
   My bibliography  Save this article

How Would We Cycle Today If We Had the Weather of Tomorrow? An Analysis of the Impact of Climate Change on Bicycle Traffic

Author

Listed:
  • Anton Galich

    (Institute of Transport Research, German Aerospace Center, Rudower Chaussee 7, 12489 Berlin, Germany)

  • Simon Nieland

    (Institute of Transport Research, German Aerospace Center, Rudower Chaussee 7, 12489 Berlin, Germany)

  • Barbara Lenz

    (Institute of Transport Research, German Aerospace Center, Rudower Chaussee 7, 12489 Berlin, Germany)

  • Jan Blechschmidt

    (INWT Statistics GmbH, Hauptstrasse 8, 10827 Berlin, Germany)

Abstract

Bicycle usage is significantly affected by weather conditions. Climate change is, therefore, expected to have an impact on the volume of bicycle traffic, which is an important factor in the planning and design of bicycle infrastructures. To predict bicycle traffic in a changed climate in the city of Berlin, this paper compares a traditional statistical approach to three machine learning models. For this purpose, a cross-validation procedure is developed that evaluates model performance on the basis of prediction accuracy. XGBoost showed the best performance and is used for the prediction of bicycle counts. Our results indicate that we can expect an overall annual increase in bicycle traffic of 1–4% in the city of Berlin due to the changes in local weather conditions caused by global climate change. The biggest changes are expected to occur in the winter season with increases of 11–14% due to rising temperatures and only slight increases in precipitation.

Suggested Citation

  • Anton Galich & Simon Nieland & Barbara Lenz & Jan Blechschmidt, 2021. "How Would We Cycle Today If We Had the Weather of Tomorrow? An Analysis of the Impact of Climate Change on Bicycle Traffic," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10254-:d:635132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Araos, Malcolm & Berrang-Ford, Lea & Ford, James D. & Austin, Stephanie E. & Biesbroek, Robbert & Lesnikowski, Alexandra, 2016. "Climate change adaptation planning in large cities: A systematic global assessment," Environmental Science & Policy, Elsevier, vol. 66(C), pages 375-382.
    2. Helbich, Marco & Böcker, Lars & Dijst, Martin, 2014. "Geographic heterogeneity in cycling under various weather conditions: evidence from Greater Rotterdam," Journal of Transport Geography, Elsevier, vol. 38(C), pages 38-47.
    3. Wadud, Zia, 2014. "Cycling in a changed climate," Journal of Transport Geography, Elsevier, vol. 35(C), pages 12-20.
    4. Pucher, John & Komanoff, Charles & Schimek, Paul, 1999. "Bicycling renaissance in North America?: Recent trends and alternative policies to promote bicycling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(7-8), pages 625-654.
    5. John Parkin & Mark Wardman & Matthew Page, 2008. "Estimation of the determinants of bicycle mode share for the journey to work using census data," Transportation, Springer, vol. 35(1), pages 93-109, January.
    6. Aldred, Rachel & Jungnickel, Katrina, 2014. "Why culture matters for transport policy: the case of cycling in the UK," Journal of Transport Geography, Elsevier, vol. 34(C), pages 78-87.
    7. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    8. Böcker, Lars & Prillwitz, Jan & Dijst, Martin, 2013. "Climate change impacts on mode choices and travelled distances: a comparison of present with 2050 weather conditions for the Randstad Holland," Journal of Transport Geography, Elsevier, vol. 28(C), pages 176-185.
    9. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    10. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzendorf, Martin & Busch-Geertsema, Annika, 2014. "The cycling boom in large German cities—Empirical evidence for successful cycling campaigns," Transport Policy, Elsevier, vol. 36(C), pages 26-33.
    2. Faber, R.M. & Jonkeren, O. & de Haas, M.C. & Molin, E.J.E. & Kroesen, M., 2022. "Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 282-295.
    3. Kathrin Goldmann & Jan Wessel, 2020. "Some People Feel the Rain, Others Just Get Wet: An Analysis of Regional Differences in the Effects of Weather on Cycling," Working Papers 33, Institute of Transport Economics, University of Muenster.
    4. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    5. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    6. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    7. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    8. Joeri F. P. Mil & Tessa S. Leferink & Jan Anne Annema & Niels Oort, 2021. "Insights into factors affecting the combined bicycle-transit mode," Public Transport, Springer, vol. 13(3), pages 649-673, October.
    9. Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.
    10. Hudde, Ansgar, 2023. "It's the mobility culture, stupid! Winter conditions strongly reduce bicycle usage in German cities, but not in Dutch ones," Journal of Transport Geography, Elsevier, vol. 106(C).
    11. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    12. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    13. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    14. Kapitza, Jonas, 2022. "How people get to work at night. A discrete choice model approach towards the influence of nighttime on the choice of transport mode for commuting to work," Journal of Transport Geography, Elsevier, vol. 104(C).
    15. Spencer, Phoebe & Watts, Richard & Vivanco, Luis & Flynn, Brian, 2013. "The effect of environmental factors on bicycle commuters in Vermont: influences of a northern climate," Journal of Transport Geography, Elsevier, vol. 31(C), pages 11-17.
    16. McCreery-Phillips, Samuel & Heydari, Shahram, 2023. "Neighbourhood characteristics and bicycle commuting in the Greater London area," Transport Policy, Elsevier, vol. 142(C), pages 152-161.
    17. Vandenbulcke, Grégory & Thomas, Isabelle & de Geus, Bas & Degraeuwe, Bart & Torfs, Rudi & Meeusen, Romain & Int Panis, Luc, 2009. "Mapping bicycle use and the risk of accidents for commuters who cycle to work in Belgium," Transport Policy, Elsevier, vol. 16(2), pages 77-87, March.
    18. Patrick Moore & Marco Helbich, 2020. "Cycling through the Landscape of Advertising in Amsterdam: A Commuters Perspective," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    19. Senes, Giulio & Rovelli, Roberto & Bertoni, Danilo & Arata, Laura & Fumagalli, Natalia & Toccolini, Alessandro, 2017. "Factors influencing greenways use: Definition of a method for estimation in the Italian context," Journal of Transport Geography, Elsevier, vol. 65(C), pages 175-187.
    20. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10254-:d:635132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.