IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9740-d625476.html
   My bibliography  Save this article

Application of Granular and Non-Granular Organic Fertilizers in Terms of Energy, Environmental and Economic Efficiency

Author

Listed:
  • Egidijus Šarauskis

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, LT-53362 Akademija, Lithuania)

  • Vilma Naujokienė

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, LT-53362 Akademija, Lithuania)

  • Kristina Lekavičienė

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, LT-53362 Akademija, Lithuania)

  • Zita Kriaučiūnienė

    (Institute of Agroecosystems and Soil Sciences, Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, LT-53361 Akademija, Lithuania)

  • Eglė Jotautienė

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, LT-53362 Akademija, Lithuania)

  • Algirdas Jasinskas

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, LT-53362 Akademija, Lithuania)

  • Raimonda Zinkevičienė

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 15A, LT-53362 Akademija, Lithuania)

Abstract

Granular organic fertilizers have been increasingly used in agriculture due to the longer delivery of nutrients to plants and the milder impact on the environment. The aim of this study was to determine the energy, environmental and economic efficiency of granular and non-granular organic fertilizers. Four technological scenarios of organic fertilizer use were used for comparative assessment: (1) manure fertilization (16.0 t ha −1 ), (2) manure fertilization (30.0 t ha −1 ), (3) manure pellet fertilization (2.0 t ha −1 ), and (4) fertilization with meat and bone meal pellets (0.7 t ha −1 ). Experimental studies using the mass flow method of laser spectroscopy were performed to evaluate the comparative environmental impact of granular and non-granular organic fertilizers. Economic assessment was performed for mechanized technological operations of loading, transportation and distribution of organic fertilizers, estimating the price of aggregates used and fuel consumed, the costs of individual technological operations and other indirect costs. The results showed that for mechanized technological operations, when fertilizing with granular organic manure and meat and bone meal fertilizer, energy consumption is 3.2 to 4.0 times lower compared to fertilization with manure. The average ammonia (NH 3 ) emissions from granular organic fertilizers were found to be six times lower than from non-granular organic fertilizers. The lowest costs for mechanized works were incurred when using meat and bone meal pellets, the highest economic benefits of organic fertilizers by elements was when using manure 30 t ha −1 , and the highest costs for organic fertilizers were incurred when using manure pellets.

Suggested Citation

  • Egidijus Šarauskis & Vilma Naujokienė & Kristina Lekavičienė & Zita Kriaučiūnienė & Eglė Jotautienė & Algirdas Jasinskas & Raimonda Zinkevičienė, 2021. "Application of Granular and Non-Granular Organic Fertilizers in Terms of Energy, Environmental and Economic Efficiency," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9740-:d:625476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Šarauskis, Egidijus & Romaneckas, Kęstutis & Jasinskas, Algirdas & Kimbirauskienė, Rasa & Naujokienė, Vilma, 2020. "Improving energy efficiency and environmental mitigation through tillage management in faba bean production," Energy, Elsevier, vol. 209(C).
    2. Sharara, Mahmoud A. & Runge, Troy & Larson, Rebecca & Primm, John G., 2018. "Techno-economic optimization of community-based manure processing," Agricultural Systems, Elsevier, vol. 161(C), pages 117-123.
    3. Indrė Bručienė & Domantas Aleliūnas & Egidijus Šarauskis & Kęstutis Romaneckas, 2021. "Influence of Mechanical and Intelligent Robotic Weed Control Methods on Energy Efficiency and Environment in Organic Sugar Beet Production," Agriculture, MDPI, vol. 11(5), pages 1-17, May.
    4. K. M. Atikur Rahman & Dunfu Zhang, 2018. "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    5. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.
    6. Li Li & Wenliang Wu & Paul Giller & John O’Halloran & Long Liang & Peng Peng & Guishen Zhao, 2018. "Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    7. Jelle Van Loon & Alicia B. Speratti & Louis Gabarra & Bram Govaerts, 2018. "Precision for Smallholder Farmers: A Small-Scale-Tailored Variable Rate Fertilizer Application Kit," Agriculture, MDPI, vol. 8(4), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebeka Pajura & Adam Masłoń & Joanna Czarnota, 2023. "The Use of Waste to Produce Liquid Fertilizers in Terms of Sustainable Development and Energy Consumption in the Fertilizer Industry—A Case Study from Poland," Energies, MDPI, vol. 16(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huong Thi Thuy Dao & Jeong Min Seo & Jonathan O. Hernandez & Si Ho Han & Woo Bin Youn & Ji Young An & Byung Bae Park, 2020. "Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    2. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Hasan Mirzakhaninafchi & Manjeet Singh & Anoop Kumar Dixit & Apoorv Prakash & Shikha Sharda & Jugminder Kaur & Ali Mirzakhani Nafchi, 2022. "Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    4. Šarauskis, Egidijus & Romaneckas, Kęstutis & Jasinskas, Algirdas & Kimbirauskienė, Rasa & Naujokienė, Vilma, 2020. "Improving energy efficiency and environmental mitigation through tillage management in faba bean production," Energy, Elsevier, vol. 209(C).
    5. Chitranshi Patel & Jyoti Singh & Anagha Karunakaran & Wusirika Ramakrishna, 2023. "Evolution of Nano-Biofertilizer as a Green Technology for Agriculture," Agriculture, MDPI, vol. 13(10), pages 1-21, September.
    6. Jinwu Wang & Nuan Wen & Ziming Liu & Wenqi Zhou & Han Tang & Qi Wang & Jinfeng Wang, 2022. "Coupled Bionic Design of Liquid Fertilizer Deep Application Type Opener Based on Sturgeon Streamline to Enhance Opening Performance in Cold Soils of Northeast China," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    7. Vida Dabkienė & Tomas Baležentis & Dalia Štreimikienė, 2022. "Reconciling the micro‐ and macro‐perspective in agricultural energy efficiency analysis for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 149-164, February.
    8. Qiuwei Bai & Hongpin Luo & Xinglan Fu & Xin Zhang & Guanglin Li, 2023. "Design and Experiment of Lightweight Dual-Mode Automatic Variable-Rate Fertilization Device and Control System," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    9. Mohammad Nishat Akhtar & Emaad Ansari & Syed Sahal Nazli Alhady & Elmi Abu Bakar, 2023. "Leveraging on Advanced Remote Sensing- and Artificial Intelligence-Based Technologies to Manage Palm Oil Plantation for Current Global Scenario: A Review," Agriculture, MDPI, vol. 13(2), pages 1-26, February.
    10. Tatbita Titin Suhariyanto & Dzuraidah Abd Wahab & Mohd Nizam Ab Rahman, 2018. "Product Design Evaluation Using Life Cycle Assessment and Design for Assembly: A Case Study of a Water Leakage Alarm," Sustainability, MDPI, vol. 10(8), pages 1-26, August.
    11. Rasa Kimbirauskienė & Aušra Sinkevičienė & Rokas Jonaitis & Kęstutis Romaneckas, 2023. "Impact of Tillage Intensity on the Development of Faba Bean Cultivation," Sustainability, MDPI, vol. 15(11), pages 1-12, June.
    12. Ramona Cech & Friedrich Leisch & Johann G. Zaller, 2022. "Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019," Agriculture, MDPI, vol. 12(6), pages 1-16, June.
    13. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.
    14. Sanjay RODE, 2020. "Managing the Transformation of Traditional to Organic Agriculture in Pune District: A Long Term Policy Framework," Management and Economics Review, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 5(1), pages 174-196, June.
    15. Huaquan Zhang & Yashuang Tang & Abbas Ali Chandio & Ghulam Raza Sargani & Martinson Ankrah Twumasi, 2022. "Measuring the Effects of Climate Change on Wheat Production: Evidence from Northern China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    16. Faruque-As-Sunny & Zuhui Huang & Taonarufaro Tinaye Pemberai Karimanzira, 2018. "Investigating Key Factors Influencing Farming Decisions Based on Soil Testing and Fertilizer Recommendation Facilities (STFRF)—A Case Study on Rural Bangladesh," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    17. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    18. Sang-Mo Kang & Arjun Adhikari & Dibya Bhatta & Ho-Jun Gam & Min-Ji Gim & Joon-Ik Son & Jin Y. Shin & In-Jung Lee, 2022. "Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce ( Lactuca sativa L.)," Resources, MDPI, vol. 11(2), pages 1-12, February.
    19. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    20. Qiangsheng Wang & Kunlong Yu & Hui Zhang, 2022. "Controlled-Release Fertilizer Improves Rice Matter Accumulation Characteristics and Yield in Rice–Crayfish Coculture," Agriculture, MDPI, vol. 12(10), pages 1-17, October.

    More about this item

    Keywords

    pellets; manure; emissions;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9740-:d:625476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.