IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i11p1191-d1668607.html
   My bibliography  Save this article

Utilization of Gluconacetobacter diazotrophicus in Tomato Crop: Interaction with Nitrogen and Phosphorus Fertilization

Author

Listed:
  • Nelson Ceballos-Aguirre

    (Faculty of Agricultural Sciences, Universidad de Caldas, Manizales 170004, Colombia)

  • Gloria M. Restrepo

    (Faculty of Health Sciences, Research Institute in Microbiology and Agro-Industrial Biotechnology, Universidad Católica de Manizales, Manizales 170002, Colombia)

  • Sergio Patiño

    (Faculty of Agricultural Sciences, Universidad de Caldas, Manizales 170004, Colombia)

  • Jorge A. Cuéllar

    (Faculty of Health Sciences, Research Institute in Microbiology and Agro-Industrial Biotechnology, Universidad Católica de Manizales, Manizales 170002, Colombia)

  • Óscar J. Sánchez

    (Center for Technological Development—Bioprocess and Agro-Industry Plant, Department of Engineering, Universidad de Caldas, Manizales 170004, Colombia)

Abstract

Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium capable of colonizing different host plants. This work evaluated the impact of Colombian native isolate G. diazotrophicus GIBI029 on tomato yield and quality in response to nitrogen and phosphorus fertilization levels. The experiment was conducted under semi-controlled conditions using a split-plot design with four replicates and ten plants per treatment. Variables assessed included fruit count per plant, fruit weight, average fruit weight, production per plant, and yield. Application of GIBI029 without fertilization resulted in a higher number and weight of fruits per plant across harvests (7.1 fruits, 509.2 g) compared to both the unfertilized control (4.8 fruits, 271.7 g) and with complete nitrogen and phosphorus fertilization (5.2 fruits, 288.8 g). The behavior of these variables were similar for GIBI029 and complete fertilization (7.0 fruits and 510.7 g per harvest). The highest yields were obtained with GIBI029 without fertilization (106.1 t ha −1 ) and with full nitrogen and phosphorus fertilization (106.4 t ha −1 ). Under the evaluated conditions, native G. diazotrophicus GIBI029 isolate could effectively improve tomato growth and yield in contrast to the controls. Based on these findings, the reproducibility of this behavior should be confirmed, and the mechanisms involved in the plant–bacteria interaction should be determined.

Suggested Citation

  • Nelson Ceballos-Aguirre & Gloria M. Restrepo & Sergio Patiño & Jorge A. Cuéllar & Óscar J. Sánchez, 2025. "Utilization of Gluconacetobacter diazotrophicus in Tomato Crop: Interaction with Nitrogen and Phosphorus Fertilization," Agriculture, MDPI, vol. 15(11), pages 1-30, May.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1191-:d:1668607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/11/1191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/11/1191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. M. Atikur Rahman & Dunfu Zhang, 2018. "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huong Thi Thuy Dao & Jeong Min Seo & Jonathan O. Hernandez & Si Ho Han & Woo Bin Youn & Ji Young An & Byung Bae Park, 2020. "Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    2. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Qiuwei Bai & Hongpin Luo & Xinglan Fu & Xin Zhang & Guanglin Li, 2023. "Design and Experiment of Lightweight Dual-Mode Automatic Variable-Rate Fertilization Device and Control System," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    4. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.
    5. Sang-Mo Kang & Arjun Adhikari & Dibya Bhatta & Ho-Jun Gam & Min-Ji Gim & Joon-Ik Son & Jin Y. Shin & In-Jung Lee, 2022. "Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce ( Lactuca sativa L.)," Resources, MDPI, vol. 11(2), pages 1-12, February.
    6. Azhari, Mohamed El & Hamadi, Youssef El & Boughlala, Mohamed & Hattab, Samia, 2024. "Factors Affecting the Adoption of Recommended Fertilizer Doses by Wheat Farmers in the Casablanca-Settat Region of Morocco," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 16(2), June.
    7. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    8. Qiangsheng Wang & Kunlong Yu & Hui Zhang, 2022. "Controlled-Release Fertilizer Improves Rice Matter Accumulation Characteristics and Yield in Rice–Crayfish Coculture," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    9. Olayinka Omotosho & Adebayo Oke & Azarel Uthman & Adekunle Atta & Emmanuel Ezaka, 2021. "Development of a manually operated organic and inorganic fertiliser applicator for smallholder farmers," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(2), pages 51-57.
    10. Reza Movahedi & Mahboobeh Ataei-Asad & Taraneh Sarami-Foroushani, 2024. "Changing potato farmers’ behavior against only the chemical fertilizers to promote sustainable agricultural practice in Hamedan Province, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24359-24380, September.
    11. Waqas, Muhammad & Yahya, Farzan & Ahmed, Ammar & Rasool, Yasir & Hongbo, Li, 2021. "Unlocking employee's green behavior in fertilizer industry: the role of green HRM practices and psychological ownership," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(5), May.
    12. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Muhammad Ihtisham & Abdullah & Simplice A. Asongu & Stephen Ansah & Shemei Zhang, 2021. "Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset," Land, MDPI, vol. 10(10), pages 1-19, September.
    13. Georgios Tsimelas & Dimitris Kofinas, 2023. "A Resource Nexus Analysis Methodology for Quantifying Synergies and Trade-Offs in the Agricultural Sector and Revealing Implications of a Legume Production Paradigm Shift," Sustainability, MDPI, vol. 15(12), pages 1-29, June.
    14. Mohammad Mahbubur Rahman & Jeffry D. Connor, 2022. "Impact of Agricultural Extension Services on Fertilizer Use and Farmers’ Welfare: Evidence from Bangladesh," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    15. Chitranshi Patel & Jyoti Singh & Anagha Karunakaran & Wusirika Ramakrishna, 2023. "Evolution of Nano-Biofertilizer as a Green Technology for Agriculture," Agriculture, MDPI, vol. 13(10), pages 1-21, September.
    16. Jinwu Wang & Nuan Wen & Ziming Liu & Wenqi Zhou & Han Tang & Qi Wang & Jinfeng Wang, 2022. "Coupled Bionic Design of Liquid Fertilizer Deep Application Type Opener Based on Sturgeon Streamline to Enhance Opening Performance in Cold Soils of Northeast China," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    17. Huaquan Zhang & Yashuang Tang & Abbas Ali Chandio & Ghulam Raza Sargani & Martinson Ankrah Twumasi, 2022. "Measuring the Effects of Climate Change on Wheat Production: Evidence from Northern China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    18. Faruque-As-Sunny & Zuhui Huang & Taonarufaro Tinaye Pemberai Karimanzira, 2018. "Investigating Key Factors Influencing Farming Decisions Based on Soil Testing and Fertilizer Recommendation Facilities (STFRF)—A Case Study on Rural Bangladesh," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    19. Khatun Asma & Moinul Islam & Tatsuyoshi Saijo & Koji Kotani, "undated". "A future design social experiment for sustainable agricultural production," Working Papers SDES-2025-3, Kochi University of Technology, School of Economics and Management.
    20. Faruque As Sunny & Juping Lan & Mohammad Ariful Islam, 2024. "Agrarian change through sustainable agri-tech adoption in a challenging rice farming region: A panel data analysis," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 70(12), pages 606-620.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1191-:d:1668607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.