IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i6p1138-d1158243.html
   My bibliography  Save this article

Design and Experiment of Lightweight Dual-Mode Automatic Variable-Rate Fertilization Device and Control System

Author

Listed:
  • Qiuwei Bai

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Hongpin Luo

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Xinglan Fu

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Xin Zhang

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Guanglin Li

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

Abstract

China’s agricultural facilities are developing rapidly and are mainly operated through household contracting. Due to a lack of suitable variable-rate fertilization devices, manual and blind fertilization still widely exists, resulting in fertilizer waste and environmental pollution. Meanwhile, existing fertilization devices cannot simultaneously meet the needs of different fertilization methods for crop cultivation, increasing the cost of mechanized fertilization. This study developed a lightweight dual-mode automatic variable-rate fertilization device and control system for strip fertilization and spreading fertilization. The least squares method was used to analyze the amount of fertilizer discharged per second at different volumes and rotational speeds of the fertilization device. The quadratic polynomial model fits well, with determination coefficients greater than 0.99. The automatic variable strip fertilization and spreading fertilization control models were established. Experiments with strip fertilization and spreading fertilization were carried out. The results of strip fertilization experiments show that the maximum relative error ( R e ) for granular nitrogen fertilizer (NF) was 6.81%, compound fertilizer (CF) was 6.2%, organic compound fertilizer (OCF) was 6.83%, and the maximum coefficient of variation ( C v ) of uniformity was 8.91%. The results of spreading fertilization experiments show that the maximum R e of granular NF was 7.31%, granular CF was 6.76%, granular OCF was 7.43%, the C v of lateral uniformity was 9.88%, and the C v of total uniformity was 14.17%. The developed fertilization device and control system can meet the needs of different fertilization amounts, types, and methods for facility crop cultivation at different stages. This study’s results can provide a theoretical basis and technical support for designing and optimizing multifunctional precision variable-rate fertilization devices and control systems.

Suggested Citation

  • Qiuwei Bai & Hongpin Luo & Xinglan Fu & Xin Zhang & Guanglin Li, 2023. "Design and Experiment of Lightweight Dual-Mode Automatic Variable-Rate Fertilization Device and Control System," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1138-:d:1158243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/6/1138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/6/1138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhuohuai Guan & Senlin Mu & Tao Jiang & Haitong Li & Min Zhang & Chongyou Wu & Mei Jin, 2022. "Development of Centrifugal Disc Spreader on Tracked Combine Harvester for Rape Undersowing Rice Based on DEM," Agriculture, MDPI, vol. 12(4), pages 1-18, April.
    2. Qian, Long & Lu, Hua & Gao, Qiang & Lu, Hualiang, 2022. "Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China," Land Use Policy, Elsevier, vol. 115(C).
    3. Xiuli Zhang & Yikun Pei & Yong Chen & Qianglong Song & Peilin Zhou & Yueqing Xia & Xiaochan Liu, 2022. "The Design and Experiment of Vertical Variable Cavity Base Fertilizer Fertilizing Apparatus," Agriculture, MDPI, vol. 12(11), pages 1-15, October.
    4. Yugong Dang & Gang Yang & Jun Wang & Zhigang Zhou & Zhidong Xu, 2022. "A Decision-Making Capability Optimization Scheme of Control Combination and PID Controller Parameters for Bivariate Fertilizer Applicator Improved by Using EDEM," Agriculture, MDPI, vol. 12(12), pages 1-23, December.
    5. K. M. Atikur Rahman & Dunfu Zhang, 2018. "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    6. Haixia Wu & Yan Ge, 2019. "Excessive Application of Fertilizer, Agricultural Non-Point Source Pollution, and Farmers’ Policy Choice," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    7. Haoran Bu & Siyao Yu & Wancheng Dong & Lixin Zhang & Yuanqing Xia, 2022. "Analysis of the Effect of Bivariate Fertilizer Discharger Control Sequence on Fertilizer Discharge Performance," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mahbubur Rahman & Jeffry D. Connor, 2022. "Impact of Agricultural Extension Services on Fertilizer Use and Farmers’ Welfare: Evidence from Bangladesh," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    2. Huong Thi Thuy Dao & Jeong Min Seo & Jonathan O. Hernandez & Si Ho Han & Woo Bin Youn & Ji Young An & Byung Bae Park, 2020. "Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    3. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    4. Chitranshi Patel & Jyoti Singh & Anagha Karunakaran & Wusirika Ramakrishna, 2023. "Evolution of Nano-Biofertilizer as a Green Technology for Agriculture," Agriculture, MDPI, vol. 13(10), pages 1-21, September.
    5. Yang Guo & Meiling Cui & Zhigang Xu, 2023. "Effect of Spatial Characteristics of Farmland Plots on Transfer Patterns in China: A Supply and Demand Perspective," Land, MDPI, vol. 12(2), pages 1-15, February.
    6. Xiaoyu Sun & Weijing Zhu & Aili Chen & Gangqiao Yang, 2022. "Land Certificated Program and Farmland “Stickiness” of Rural Labor: Based on the Perspective of Land Production Function," Land, MDPI, vol. 11(9), pages 1-24, September.
    7. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    8. Jinwu Wang & Nuan Wen & Ziming Liu & Wenqi Zhou & Han Tang & Qi Wang & Jinfeng Wang, 2022. "Coupled Bionic Design of Liquid Fertilizer Deep Application Type Opener Based on Sturgeon Streamline to Enhance Opening Performance in Cold Soils of Northeast China," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    9. Fengwan Zhang & Xueling Bao & Xin Deng & Dingde Xu, 2022. "Rural Land Transfer in the Information Age: Can Internet Use Affect Farmers’ Land Transfer-In?," Land, MDPI, vol. 11(10), pages 1-14, October.
    10. Xiuling Ding & Qian Lu & Lipeng Li & Apurbo Sarkar & Hua Li, 2023. "Does Labor Transfer Improve Farmers’ Willingness to Withdraw from Farming?—A Bivariate Probit Modeling Approach," Land, MDPI, vol. 12(8), pages 1-27, August.
    11. Ping Xue & Xinru Han & Yongchun Wang & Xiudong Wang, 2022. "Can Agricultural Machinery Harvesting Services Reduce Cropland Abandonment? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-15, June.
    12. Lijuan Xu & Abbas Ali Chandio & Jingyi Wang & Yuansheng Jiang, 2022. "Does Farmland Tenancy Improve Household Asset Allocation? Evidence from Rural China," Land, MDPI, vol. 12(1), pages 1-22, December.
    13. Lian-Jie Wan & Yang Tian & Man He & Yong-Qiang Zheng & Qiang Lyu & Rang-Jin Xie & Yan-Yan Ma & Lie Deng & Shi-Lai Yi, 2021. "Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield," Agriculture, MDPI, vol. 11(12), pages 1-15, November.
    14. Xiang Li & Xiaoqin Guo, 2023. "Can Policy Promote Agricultural Service Outsourcing? Quasi-Natural Experimental Evidence from China," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    15. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.
    16. Logesh Mohankumar & Muthuprasad Thiyaharajan & Kavi Sidharthan Venkidusamy, 2024. "Understanding the communication network of farmers to ensure the sustainable use of pesticides," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 14(1), pages 12-23, March.
    17. Zhao, Zhiyuan & Zheng, Wei & Ma, Yanting & Wang, Xianling & Li, Ziyan & Zhai, Bingnian & Wang, Zhaohui, 2020. "Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 240(C).
    18. Huaquan Zhang & Yashuang Tang & Abbas Ali Chandio & Ghulam Raza Sargani & Martinson Ankrah Twumasi, 2022. "Measuring the Effects of Climate Change on Wheat Production: Evidence from Northern China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    19. Faruque-As-Sunny & Zuhui Huang & Taonarufaro Tinaye Pemberai Karimanzira, 2018. "Investigating Key Factors Influencing Farming Decisions Based on Soil Testing and Fertilizer Recommendation Facilities (STFRF)—A Case Study on Rural Bangladesh," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    20. Wei Chen & Quanzhong Wang & Hong Zhou, 2022. "Digital Rural Construction and Farmers’ Income Growth: Theoretical Mechanism and Micro Experience Based on Data from China," Sustainability, MDPI, vol. 14(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1138-:d:1158243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.