IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8837-d610229.html
   My bibliography  Save this article

Demand Stratification and Prediction of Evacuees after Earthquakes

Author

Listed:
  • Shaoqing Geng

    (Department of Logistics Management and Engineering, School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Hanping Hou

    (Department of Logistics Management and Engineering, School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

Abstract

In recent years, frequent natural disasters have brought huge losses to human lives and property, directly affecting social stability and economic development. Since the driving factor of disaster management operations is speed, it will face severe challenges and tremendous pressure when matching the supply of emergency resources with the demand. However, it is difficult to figure out the demands of the affected area until the initial post-disaster assessment is completed and demand is constantly changing. The focus of this paper is to stratify the evacuation needs and predict the number of evacuees and supplies demanded after an earthquake. This research takes a large-scale earthquake as an example to analyze the characteristics of evacuation demand stratification and the factors that affect the demands of evacuees. The forecast model for the number of evacuees is selected and improved. Moreover, combining the influencing factors of materials demand and the number of evacuees, a forecast model of materials demand for evacuees is constructed. The proposed model is used in the case of the Ya’an earthquake in China to estimate the number of evacuees and the daily need for emergency supplies.

Suggested Citation

  • Shaoqing Geng & Hanping Hou, 2021. "Demand Stratification and Prediction of Evacuees after Earthquakes," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8837-:d:610229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filipe Batista e Silva & Sérgio Freire & Marcello Schiavina & Konštantín Rosina & Mario Alberto Marín-Herrera & Lukasz Ziemba & Massimo Craglia & Eric Koomen & Carlo Lavalle, 2020. "Uncovering temporal changes in Europe’s population density patterns using a data fusion approach," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Lin, Lexin & Nilsson, Anders & Sjölin, Johan & Abrahamsson, Marcus & Tehler, Henrik, 2015. "On the perceived usefulness of risk descriptions for decision-making in disaster risk management," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 48-55.
    3. C. Chen & T. Chen & Y. Chen & S. Yu & P. Chung, 2013. "Storm surge prediction with management information systems: A case study of estimating value and observations system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1009-1027, March.
    4. Sheu, Jiuh-Biing, 2010. "Dynamic relief-demand management for emergency logistics operations under large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 1-17, January.
    5. Nurul Nnadiah Zakaria & Mahmod Othman & Rajalingam Sokkalingam & Hanita Daud & Lazim Abdullah & Evizal Abdul Kadir, 2019. "Markov Chain Model Development for Forecasting Air Pollution Index of Miri, Sarawak," Sustainability, MDPI, vol. 11(19), pages 1-11, September.
    6. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    7. Taskin, Selda & Lodree Jr., Emmett J., 2010. "Inventory decisions for emergency supplies based on hurricane count predictions," International Journal of Production Economics, Elsevier, vol. 126(1), pages 66-75, July.
    8. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    9. Chia-Nan Wang & Thanh-Tuan Dang & Ngoc-Ai-Thy Nguyen & Thi-Thu-Hong Le, 2020. "Supporting Better Decision-Making: A Combined Grey Model and Data Envelopment Analysis for Efficiency Evaluation in E-Commerce Marketplaces," Sustainability, MDPI, vol. 12(24), pages 1-24, December.
    10. Allen, Jaime & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2019. "Understanding public transport satisfaction: Using Maslow's hierarchy of (transit) needs," Transport Policy, Elsevier, vol. 81(C), pages 75-94.
    11. Li, Anna C.Y. & Nozick, Linda & Xu, Ningxiong & Davidson, Rachel, 2012. "Shelter location and transportation planning under hurricane conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 715-729.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siqi Tang & Jianguo Wang & Yuanhao Xu & Shengbo Chen & Jiawang Zhang & Wutao Zhao & Guojian Wang, 2023. "Evaluation of Emergency Shelter Service Functions and Optimisation Suggestions—Case Study in the Songyuan City Central Area," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    2. Haotian Zheng & Shuchuan Zhang & Junqi Zhu & Ziyan Zhu & Xin Fang, 2022. "Evacuation in Buildings Based on BIM: Taking a Fire in a University Library as an Example," IJERPH, MDPI, vol. 19(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    2. Shaoqing Geng & Hanping Hou & Zhou Zhou, 2021. "A Hybrid Approach of VIKOR and Bi-Objective Decision Model for Emergency Shelter Location–Allocation to Respond to Earthquakes," Mathematics, MDPI, vol. 9(16), pages 1-29, August.
    3. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel & Yi, Wenqi & Yang, Kun, 2021. "A stochastic optimization model for staged hospital evacuation during hurricanes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    4. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    5. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    6. Gutjahr, Walter J. & Dzubur, Nada, 2016. "Bi-objective bilevel optimization of distribution center locations considering user equilibria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 1-22.
    7. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    8. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    9. Timperio, Giuseppe & Kundu, Tanmoy & Klumpp, Matthias & de Souza, Robert & Loh, Xiu Hui & Goh, Kelvin, 2022. "Beneficiary-centric decision support framework for enhanced resource coordination in humanitarian logistics: A case study from ASEAN," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    10. He, Yuxuan & Liu, Nan, 2015. "Methodology of emergency medical logistics for public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 178-200.
    11. Jiang-Hua Zhang & Hai-Yue Liu & Rui Zhu & Yang Liu, 2017. "Emergency Evacuation of Hazardous Chemical Accidents Based on Diffusion Simulation," Complexity, Hindawi, vol. 2017, pages 1-16, December.
    12. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    13. Yi, Wenqi & Nozick, Linda & Davidson, Rachel & Blanton, Brian & Colle, Brian, 2017. "Optimization of the issuance of evacuation orders under evolving hurricane conditions," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 285-304.
    14. Alizadeh, Morteza & Amiri-Aref, Mehdi & Mustafee, Navonil & Matilal, Sumohon, 2019. "A robust stochastic Casualty Collection Points location problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 965-983.
    15. Shaoqing Geng & Hanping Hou & Jiaxin Geng, 2021. "The Mechanism of Operation Effectiveness of Emergency Shelter Rescue Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    16. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.
    17. Bian Liang & Dapeng Yang & Xinghong Qin & Teresa Tinta, 2019. "A Risk-Averse Shelter Location and Evacuation Routing Assignment Problem in an Uncertain Environment," IJERPH, MDPI, vol. 16(20), pages 1-28, October.
    18. Altay, Nezih & Narayanan, Arunachalam, 2022. "Forecasting in humanitarian operations: Literature review and research needs," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1234-1244.
    19. Shaoqing Geng & Hanping Hou & Shaoguang Zhang, 2020. "Multi-Criteria Location Model of Emergency Shelters in Humanitarian Logistics," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    20. Mohsen Yahyaei & Ali Bozorgi-Amiri, 2019. "Robust reliable humanitarian relief network design: an integration of shelter and supply facility location," Annals of Operations Research, Springer, vol. 283(1), pages 897-916, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8837-:d:610229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.