IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8581-d606431.html
   My bibliography  Save this article

The Measurement and Influencing Factors of Total Factor Productivity in the Chinese Rural Distribution Industry

Author

Listed:
  • Chaoxun Ding

    (School of Management, Henan University of Science and Technology, 263 Kaiyuan Ave, Luoyang 450062, China)

  • Ruidan Zhang

    (Development Planning Division, Henan University of Science and Technology, 263 Kaiyuan Ave, Luoyang 450062, China)

Abstract

Total factor productivity (TFP) is critical to the sustainable development of the rural distribution industry. Improvements in productivity of the rural distribution industry can promote the high-quality development of the Chinese distribution industry. Studying the characteristics and influencing factors of total factor productivity in regard to the rural distribution industry in China is significant for promoting the transformation and development of the rural distribution industry. This paper uses the DEA–Malmquist Index to measure the total factor productivity (TFP) of the Chinese rural distribution industry and its decomposition index, and uses a panel data model to empirically study its influencing factors. The results show that, from 2008 to 2018, the TFP of the Chinese rural distribution industry showed a trend of rising first and then fluctuating and declining, with an average annual growth rate of 2.93%; the fluctuation direction of the TFP of the rural distribution industry in the eastern and western regions of China is basically the same, which has had a reverse change relationship with the central and northeast regions for many years. The industrial structure, urbanization rate, rural informatization rate, and conditions of the transportation facilities have significant impacts on the TFP of the rural distribution industry, among which the informatization rate has the greatest positive impact.

Suggested Citation

  • Chaoxun Ding & Ruidan Zhang, 2021. "The Measurement and Influencing Factors of Total Factor Productivity in the Chinese Rural Distribution Industry," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8581-:d:606431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Yafei Wang & Li Xie & Yi Zhang & Chunyun Wang & Ke Yu, 2019. "Does FDI Promote or Inhibit the High-Quality Development of Agriculture in China? An Agricultural GTFP Perspective," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    3. Maican, Florin & Orth, Matilda, 2015. "A dynamic analysis of entry regulations and productivity in retail trade," International Journal of Industrial Organization, Elsevier, vol. 40(C), pages 67-80.
    4. Qiang Li & Xiaohang Wu & Yi Zhang & Yafei Wang, 2020. "The Effect of Agricultural Environmental Total Factor Productivity on Urban-Rural Income Gap: Integrated View from China," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    5. Bin Li & Shuai Shi & Yating Zeng, 2020. "The Impact of Haze Pollution on Firm-Level TFP in China: Test of a Mediation Model of Labor Productivity," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    6. D. W. Jorgenson & Z. Griliches, 1967. "The Explanation of Productivity Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(3), pages 249-283.
    7. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    8. Shin, Seungjae & Eksioglu, Burak, 2015. "An empirical study of RFID productivity in the U.S. retail supply chain," International Journal of Production Economics, Elsevier, vol. 163(C), pages 89-96.
    9. Hao Cai & Ling Liang & Jing Tang & Qianxian Wang & Lihong Wei & Jiaping Xie, 2019. "An Empirical Study on the Efficiency and Influencing Factors of the Photovoltaic Industry in China and an Analysis of Its Influencing Factors," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    10. Gui Ye & Yuhe Wang & Yuxin Zhang & Liming Wang & Houli Xie & Yuan Fu & Jian Zuo, 2019. "Impact of Migrant Workers on Total Factor Productivity in Chinese Construction Industry," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boima M. Bernard & Yanping Song & Sehresh Hena & Fayyaz Ahmad & Xin Wang, 2022. "Assessing Africa’s Agricultural TFP for Food Security and Effects on Human Development: Evidence from 35 Countries," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
    2. Guangfan Sun & Xiangyu Cao & Junyi Chen & Hanqi Li, 2022. "Food Culture and Sustainable Development: Evidence from Firm-Level Sustainable Total Factor Productivity in China," Sustainability, MDPI, vol. 14(14), pages 1-25, July.
    3. Gantian Zheng & Weiwei Wang & Chang Jiang & Fan Jiang, 2023. "Can Rural Industrial Convergence Improve the Total Factor Productivity of Agricultural Environments: Evidence from China," Sustainability, MDPI, vol. 15(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lan-Hsun & Liao, Shu-Yi & Huang, Mao-Lung, 2022. "The growth effects of knowledge-based technological change on Taiwan’s industry: A comparison of R&D and education level," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 525-545.
    2. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    3. Franz Haider & Robert Kunst & Franz Wirl, 2021. "Total factor productivity, its components and drivers," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(2), pages 283-327, May.
    4. Antonio Estache & Emili Grifell-Tatjé, 2010. "Assessing the impact of Mali's water privatization across stakeholders," Working Papers ECARES ECARES 2010-037, ULB -- Universite Libre de Bruxelles.
    5. Isabel-María García-Sánchez & Luis Rodríguez-Domínguez & Javier Parra-Domínguez, 2013. "Yearly evolution of police efficiency in Spain and explanatory factors," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 31-62, January.
    6. Kimhi, Ayai & Lerman, Zvi (ed.), 2015. "Agricultural transition in post-soviet Europe and Central Asia after 25 years: International workshop in honor of Professor Zvi Lerman," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 79, number 79.
    7. Thijs Raa, 2008. "Debreu’s coefficient of resource utilization, the Solow residual, and TFP: the connection by Leontief preferences," Journal of Productivity Analysis, Springer, vol. 30(3), pages 191-199, December.
    8. Christopher J. O'Donnell, 2010. "Measuring and decomposing agricultural productivity and profitability change ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 527-560, October.
    9. Sueyoshi, Toshiyuki & Hasebe, Tadashi & Ito, Fusao & Sakai, Junichi & Ozawa, Wataru, 1998. "DEA-Bilateral Performance Comparison: an Application to Japan Agricultural Co-operatives (Nokyo)," Omega, Elsevier, vol. 26(2), pages 233-248, April.
    10. Fedderke, Johannes W., 2018. "Exploring unbalanced growth: Understanding the sectoral structure of the South African economy," Economic Modelling, Elsevier, vol. 72(C), pages 177-189.
    11. Mao, Weining & Koo, Won W., 1996. "Productivity Growth, Technology Progress, And Efficiency Change In Chinese Agricultural Production From 1984 To 1993," Agricultural Economics Reports 23442, North Dakota State University, Department of Agribusiness and Applied Economics.
    12. Kimhi, Ayal & Swinnen, Johan & Van Herck, Kristine & Vranken, Liesbet & Csaki, Csaba & Jambor, Attila & Koester, Ulrich & Herzfeld, Thomas & Glauben, Thomas & Dries, Liesbeth & Teuber, Ramona & Meyers, 2015. "Agricultural transition in Post-Soviet Europe and Central Asia after 25 years: International workshop in honor of Professor Zvi Lerman," Studies on the Agricultural and Food Sector in Transition Economies 207071, Institute of Agricultural Development in Transition Economies (IAMO).
    13. Hua Zhang & Sidai Guo & Yubing Qian & Yan Liu & Chengpeng Lu, 2020. "Dynamic analysis of agricultural carbon emissions efficiency in Chinese provinces along the Belt and Road," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
    14. Li, Kui-Wai & Liu, Tung, 2011. "Economic and productivity growth decomposition: An application to post-reform China," Economic Modelling, Elsevier, vol. 28(1), pages 366-373.
    15. Robert G. Chambers & Simone Pieralli, 2020. "The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1198-1226, August.
    16. Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    17. Tae Hoon Oum & Katsuhiro Yamaguchi & Yuichiro Yoshida, 2011. "Efficiency Measurement Theory and its Application to Airport Benchmarking," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 13, Edward Elgar Publishing.
    18. Voigt, Peter, 2004. "Russlands Weg vom Plan zum Markt: Sektorale Trends und regionale Spezifika. Eine Analyse der Produktivitäts- und Effizienzentwicklungen in der Transformationsphase," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 28, number 93021.
    19. Andre Jungmittag, 2007. "Innovationen, Beschäftigungsstruktur und Wachstum der totalen Faktorproduktivität," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 27(2), pages 143-170, August.
    20. Youshuai Sun & Demi Zhu & Zhenyu Zhang & Na Yan, 2022. "Does Fiscal Stress Improve the Environmental Efficiency? Perspective Based on the Urban Horizontal Fiscal Imbalance," IJERPH, MDPI, vol. 19(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8581-:d:606431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.