IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7632-d590625.html
   My bibliography  Save this article

Potential Impacts of Autonomous Vehicles on Urban Sprawl: A Comparison of Chinese and US Car-Oriented Adults

Author

Listed:
  • Jinping Guan

    (AgeLab and Intelligent Transportation Systems Lab, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

  • Shuang Zhang

    (Division of Logistics and Transportation, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
    This author contributed equally to the first author.)

  • Lisa A. D’Ambrosio

    (AgeLab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

  • Kai Zhang

    (Division of Logistics and Transportation, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China)

  • Joseph F. Coughlin

    (AgeLab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

Abstract

Autonomous vehicles (AVs) may significantly impact people’s choice of residential locations and spatial structures. The impact may vary across different countries, but few studies have focused on it. This study drew on China and the United States (US) as two cases to study car drivers’ knowledge of AVs and willingness to move farther if AVs were available by estimating ordered logistic regression models. The results showed that 42.3% of Chinese and 29.8% of US respondents were likely to consider moving farther away from the nearest city or the destination for the most frequent trip if they had an AV. The Chinese sample had less knowledge of AVs than the US sample, but they were more likely to consider a move. AVs may lead to a new round of urban sprawl, but the challenge may be greater for China. We captured the socio-economic and transport factors that affected this result.

Suggested Citation

  • Jinping Guan & Shuang Zhang & Lisa A. D’Ambrosio & Kai Zhang & Joseph F. Coughlin, 2021. "Potential Impacts of Autonomous Vehicles on Urban Sprawl: A Comparison of Chinese and US Car-Oriented Adults," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7632-:d:590625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7632/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7632/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Jing & Hao Huang & Bin Ran & Fengping Zhan & Yuji Shi, 2019. "Exploring the Factors Affecting Mode Choice Intention of Autonomous Vehicle Based on an Extended Theory of Planned Behavior—A Case Study in China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    2. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    3. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    4. Barbour, Natalia & Menon, Nikhil & Zhang, Yu & Mannering, Fred, 2019. "Shared automated vehicles: A statistical analysis of consumer use likelihoods and concerns," Transport Policy, Elsevier, vol. 80(C), pages 86-93.
    5. Martina Raue & Lisa A. D'Ambrosio & Carley Ward & Chaiwoo Lee & Claire Jacquillat & Joseph F. Coughlin, 2019. "The Influence of Feelings While Driving Regular Cars on the Perception and Acceptance of Self‐Driving Cars," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 358-374, February.
    6. Stocker, Adam & Shaheen, Susan, 2019. "Shared Automated Vehicle (SAV) Pilots and Automated Vehicle Policy," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt69c4t4sb, Institute of Transportation Studies, UC Berkeley.
    7. Guan, Jinping & Xu, Chengzhong, 2018. "Are relocatees different from others? Relocatee’s travel mode choice and travel equity analysis in large-scale residential areas on the periphery of megacity Shanghai, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 162-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Like & Chen, Haibo & Chen, Zhiyang, 2022. "City readiness for connected and autonomous vehicles: A multi-stakeholder and multi-criteria analysis through analytic hierarchy process," Transport Policy, Elsevier, vol. 128(C), pages 13-24.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    2. Ishant Sharma & Sabyasachee Mishra, 2023. "Ranking preferences towards adopting autonomous vehicles based on peer inputs and advertisements," Transportation, Springer, vol. 50(6), pages 2139-2192, December.
    3. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    4. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    5. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    6. Laura Heubeck & Franziska Hartwich & Franziska Bocklisch, 2023. "To Share or Not to Share—Expected Transportation Mode Changes Given Different Types of Fully Automated Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    7. Limin Tan & Changxi Ma & Xuecai Xu & Jin Xu, 2019. "Choice Behavior of Autonomous Vehicles Based on Logistic Models," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    8. Lindgren, Thomas & Pink, Sarah & Fors, Vaike, 2021. "Fore-sighting autonomous driving - An Ethnographic approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    9. Shyue Chuan Chong & Foong Yee Tan & Pei Yew Mah & Choon Wei Low, 2020. "Consumers¡¯ Purchase Intention Toward Ergonomic Footwear in Malaysia," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 11(2), pages 88-96, April.
    10. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    11. Qian, Lixian & Yin, Juelin & Huang, Youlin & Liang, Ya, 2023. "The role of values and ethics in influencing consumers’ intention to use autonomous vehicle hailing services," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    12. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    13. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    14. Xu Kuang & Fuquan Zhao & Han Hao & Zongwei Liu, 2019. "Assessing the Socioeconomic Impacts of Intelligent Connected Vehicles in China: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 11(12), pages 1-28, June.
    15. Dulebenets, Maxim A. & Ozguven, Eren Erman & Moses, Ren, 2018. "The Highway Beautification Act: Towards improving efficiency of the Federal Outdoor Advertising Control Program," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 88-106.
    16. Yueqi Mao & Qiang Mei & Peng Jing & Ye Zha & Ying Xue & Jiahui Huang & Danning Shao & Pan Luo, 2022. "Factors Affecting the Parental Intention of Using AVs to Escort Children: An Integrated SEM–Hybrid Choice Model Approach," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    17. Sheng, Lu & Wu, Xiao & He, Yan, 2023. "Impact of residential relocation on activity-travel behaviors between household couples: A case study of Kunming, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    18. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    19. Jia Guo & Yusak Susilo & Constantinos Antoniou & Anna Pernestål Brenden, 2020. "Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    20. M. Eugenia López-Lambas & Andrea Alonso, 2019. "The Driverless Bus: An Analysis of Public Perceptions and Acceptability," Sustainability, MDPI, vol. 11(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7632-:d:590625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.