IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7538-d589310.html
   My bibliography  Save this article

Water Footprint Assessment of Food Loss and Waste Management Strategies in Spanish Regions

Author

Listed:
  • Daniel Hoehn

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain)

  • María Margallo

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain)

  • Jara Laso

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain)

  • Israel Ruiz-Salmón

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain)

  • Ana Fernández-Ríos

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain)

  • Cristina Campos

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain)

  • Ian Vázquez-Rowe

    (Peruvian LCA Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Lima 15088, Peru)

  • Rubén Aldaco

    (Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain)

  • Paula Quinteiro

    (Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

The availability of freshwater is one of the biggest limitations and challenges of food production, as freshwater is an increasingly scarce and overexploited resource in many parts of the world. Therefore, the concept of water footprint (WF) has gained increasing interest, in the same way that the generation of food loss and waste (FLW) in food production and consumption has become a social and political concern. Along this line, the number of studies on the WF of the food production sector is currently increasing all over the world, analyzing water scarcity and water degradation as a single WF indicator or as a so-called WF profile. In Spain, there is no study assessing the influence of FLW generation along the whole food supply chain nor is there a study assessing the different FLW management options regarding the food supply chain’s WF. This study aimed to assess the spatially differentiated WF profile for 17 Spanish regions over time, analyzing the potential linkages of FLW management and water scarcity and water degradation. The assessment considered compliance and non-compliance with the Paris Agreement targets and was based on the life cycle assessment approach. Results are highlighted in a compliance framework; the scenarios found that anaerobic digestion and aerobic composting (to a lesser extent) had the lowest burdens, while scenarios with thermal treatment had the highest impact. Additionally, the regions in the north of Spain and the islands were less influenced by the type of FLW management and by compliance with the Paris Agreement targets.

Suggested Citation

  • Daniel Hoehn & María Margallo & Jara Laso & Israel Ruiz-Salmón & Ana Fernández-Ríos & Cristina Campos & Ian Vázquez-Rowe & Rubén Aldaco & Paula Quinteiro, 2021. "Water Footprint Assessment of Food Loss and Waste Management Strategies in Spanish Regions," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7538-:d:589310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The water footprint of the Spanish agricultural sector: 1860–2010," Ecological Economics, Elsevier, vol. 108(C), pages 200-207.
    2. Garcia-Herrero, I. & Hoehn, D. & Margallo, M. & Laso, J. & Bala, A. & Batlle-Bayer, L. & Fullana, P. & Vazquez-Rowe, I. & Gonzalez, M.J. & Durá, M.J. & Sarabia, C. & Abajas, R. & Amo-Setien, F.J. & Qu, 2018. "On the estimation of potential food waste reduction to support sustainable production and consumption policies," Food Policy, Elsevier, vol. 80(C), pages 24-38.
    3. Chapagain, A.K. & Hoekstra, A.Y. & Savenije, H.H.G. & Gautam, R., 2006. "The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries," Ecological Economics, Elsevier, vol. 60(1), pages 186-203, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    2. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    3. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    4. Daniel Hoehn & María Margallo & Jara Laso & Israel Ruiz-Salmón & Laura Batlle-Bayer & Alba Bala & Pere Fullana-i-Palmer & Rubén Aldaco, 2021. "A Novel Composite Index for the Development of Decentralized Food Production, Food Loss, and Waste Management Policies: A Water-Climate-Food Nexus Approach," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    5. Cătălina Chinie & Isabelle Biclesanu & Francesco Bellini, 2021. "The Impact of Awareness Campaigns on Combating the Food Wasting Behavior of Consumers," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    6. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    7. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    8. Takeshima, Hiroyuki & Adesugba, Margaret Abiodun, 2014. "Irrigation potential in Nigeria: Some perspectives based on factor endowments, tropical nature, and patterns in favorable areas:," IFPRI discussion papers 1399, International Food Policy Research Institute (IFPRI).
    9. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    10. Pongspikul, Tayatorn & McCann, Laura M., 2020. "Farmers’ Adoption of Pressure Irrigation Systems: The Case of Cotton Producers in the Southeastern versus Southwestern U.S," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304332, Agricultural and Applied Economics Association.
    11. Luo, Na & Olsen, Tava & Liu, Yanping & Zhang, Abraham, 2022. "Reducing food loss and waste in supply chain operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    12. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    13. Yu Zhang & Jin-he Zhang & Qing Tian, 2021. "Virtual Water Trade in the Service Sector: China’s Inbound Tourism as a Case Study," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    14. Neumann, Kathleen & Stehfest, Elke & Verburg, Peter H. & Siebert, Stefan & Müller, Christoph & Veldkamp, Tom, 2011. "Exploring global irrigation patterns: A multilevel modelling approach," Agricultural Systems, Elsevier, vol. 104(9), pages 703-713.
    15. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    16. Iulia Dolganova & Natalia Mikosch & Markus Berger & Montserrat Núñez & Andrea Müller-Frank & Matthias Finkbeiner, 2019. "The Water Footprint of European Agricultural Imports: Hotspots in the Context of Water Scarcity," Resources, MDPI, vol. 8(3), pages 1-11, August.
    17. Kogg, Beatrice & Mont, Oksana, 2012. "Environmental and social responsibility in supply chains: The practise of choice and inter-organisational management," Ecological Economics, Elsevier, vol. 83(C), pages 154-163.
    18. Shuang Chen & Fangli Chen & Lisha Zhu & Qizheng Li & Xiaopeng Wang & Laili Wang, 2023. "A Spatial Water Footprint Assessment of Recycled Cotton T-Shirts: Case of Local Impacts in Selected China Provinces," Sustainability, MDPI, vol. 15(1), pages 1-15, January.
    19. Yi Liang & Aixi Han & Li Chai & Hong Zhi, 2020. "Using the Machine Learning Method to Study the Environmental Footprints Embodied in Chinese Diet," IJERPH, MDPI, vol. 17(19), pages 1-17, October.
    20. Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7538-:d:589310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.