IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7165-d582501.html
   My bibliography  Save this article

The Impacts of the Fourth Industrial Revolution on Smart and Sustainable Cities

Author

Listed:
  • Gabrielli do Livramento Gonçalves

    (Centre for Sustainable Development (GREENS), University of Southern Santa Catarina (UNISUL), Florianópolis 88704-900, Brazil)

  • Walter Leal Filho

    (Research and Transfer Centre “Sustainable Development and Climate Change Management”, Faculty of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033 Hamburg, Germany
    Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK)

  • Samara da Silva Neiva

    (Department of Administration Sciences, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, Brazil)

  • André Borchardt Deggau

    (Centre for Sustainable Development (GREENS), University of Southern Santa Catarina (UNISUL), Florianópolis 88704-900, Brazil)

  • Manoela de Oliveira Veras

    (Centre for Sustainable Development (GREENS), University of Southern Santa Catarina (UNISUL), Florianópolis 88704-900, Brazil)

  • Flávio Ceci

    (Centre for Sustainable Development (GREENS), University of Southern Santa Catarina (UNISUL), Florianópolis 88704-900, Brazil)

  • Maurício Andrade de Lima

    (Universidade do Vale do Rio do Peixe (UNIARP), Florianópolis 88040-900, Brazil)

  • José Baltazar Salgueirinho Osório de Andrade Guerra

    (Centre for Sustainable Development (GREENS), University of Southern Santa Catarina (UNISUL), Florianópolis 88704-900, Brazil)

Abstract

This article aims to analyze the impacts of the Fourth Industrial Revolution on the implementation of smart sustainable cities. For this purpose, a data mining process was conducted to analyze the terms that had a higher incidence in the literature in order to classify them by relevance and identify their interdependencies in the concepts of sustainable cities and smart cities. As a result, we highlight that the Fourth Industrial Revolution will have implications on several factors that are deeply connected to the success of cities in becoming sustainable: job creation, industries, innovation, environmental preservation, community involvement, and accessibility. In this context, policymakers will have opportunities and challenges that must be faced. Big data, the IoT, augmented reality, and simulations can have positive and negative externalities. Positive externalities include new information that could be mined, analyzed, and used for identifying previously unseen problems, the provision of new industrial innovations that can make economies thrive, helping promote inclusion for disabled people, as well as helping society to foresee problems and hence adapt to them in a timely manner.

Suggested Citation

  • Gabrielli do Livramento Gonçalves & Walter Leal Filho & Samara da Silva Neiva & André Borchardt Deggau & Manoela de Oliveira Veras & Flávio Ceci & Maurício Andrade de Lima & José Baltazar Salgueirinho, 2021. "The Impacts of the Fourth Industrial Revolution on Smart and Sustainable Cities," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7165-:d:582501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenni Viitanen & Richard Kingston, 2014. "Smart Cities and Green Growth: Outsourcing Democratic and Environmental Resilience to the Global Technology Sector," Environment and Planning A, , vol. 46(4), pages 803-819, April.
    2. Kumar, Harish & Singh, Manoj Kumar & Gupta, M.P. & Madaan, Jitendra, 2020. "Moving towards smart cities: Solutions that lead to the Smart City Transformation Framework," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    3. Ghobadian, Abby & Talavera, Irene & Bhattacharya, Arijit & Kumar, Vikas & Garza-Reyes, Jose Arturo & O'Regan, Nicholas, 2020. "Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability," International Journal of Production Economics, Elsevier, vol. 219(C), pages 457-468.
    4. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
    5. Sotiris Zygiaris, 2013. "Smart City Reference Model: Assisting Planners to Conceptualize the Building of Smart City Innovation Ecosystems," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(2), pages 217-231, June.
    6. Robert G. Hollands, 2008. "Will the real smart city please stand up?," City, Taylor & Francis Journals, vol. 12(3), pages 303-320, December.
    7. Escolar, Soledad & Villanueva, Félix J. & Santofimia, Maria J. & Villa, David & Toro, Xavier del & López, Juan Carlos, 2019. "A Multiple-Attribute Decision Making-based approach for smart city rankings design," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 42-55.
    8. Ju, Jingrui & Liu, Luning & Feng, Yuqiang, 2018. "Citizen-centered big data analysis-driven governance intelligence framework for smart cities," Telecommunications Policy, Elsevier, vol. 42(10), pages 881-896.
    9. Tuba Bakıcı & Esteve Almirall & Jonathan Wareham, 2013. "A Smart City Initiative: the Case of Barcelona," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(2), pages 135-148, June.
    10. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    11. Minako Hara & Tomomi Nagao & Shinsuke Hannoe & Jiro Nakamura, 2016. "New Key Performance Indicators for a Smart Sustainable City," Sustainability, MDPI, vol. 8(3), pages 1-19, March.
    12. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126189, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Lazaroiu, George Cristian & Roscia, Mariacristina, 2012. "Definition methodology for the smart cities model," Energy, Elsevier, vol. 47(1), pages 326-332.
    14. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    15. Brock, Kati & den Ouden, Elke & van der Klauw, Kees & Podoynitsyna, Ksenia & Langerak, Fred, 2019. "Light the way for smart cities: Lessons from Philips Lighting," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 194-209.
    16. Bugge, Markus M. & Fevolden, Arne Martin & Klitkou, Antje, 2019. "Governance for system optimization and system change: The case of urban waste," Research Policy, Elsevier, vol. 48(4), pages 1076-1090.
    17. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    18. Ben Letaifa, Soumaya, 2015. "How to strategize smart cities: Revealing the SMART model," Journal of Business Research, Elsevier, vol. 68(7), pages 1414-1419.
    19. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irene Y. H. Fan & Wilson K. F. Shum, 2023. "Knowledge Management: The Missing Bonding Discipline of STEM Education," International Journal of Knowledge and Systems Science (IJKSS), IGI Global, vol. 14(1), pages 1-17, January.
    2. Catalin Vrabie, 2022. "Electric Vehicles Optimism versus the Energy Market Reality," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    3. Marcin Janusz & Marcin Kowalczyk, 2022. "How Smart Are V4 Cities? Evidence from the Multidimensional Analysis," Sustainability, MDPI, vol. 14(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    2. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    3. Marchesani, Filippo & Masciarelli, Francesca & Bikfalvi, Andrea, 2023. "Smart city as a hub for talent and innovative companies: Exploring the (dis) advantages of digital technology implementation in cities," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    4. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Strategic principles for smart city development: A multiple case study analysis of European best practices," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 70-97.
    5. Mora, Luca & Gerli, Paolo & Ardito, Lorenzo & Messeni Petruzzelli, Antonio, 2023. "Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda," Technovation, Elsevier, vol. 123(C).
    6. Munan Li, 2019. "Visualizing the studies on smart cities in the past two decades: a two-dimensional perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 683-705, August.
    7. Guido Perboli & Mariangela Rosano, 2020. "A Taxonomic Analysis of Smart City Projects in North America and Europe," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    8. Justyna Żywiołek & Francesco Schiavone, 2021. "Perception of the Quality of Smart City Solutions as a Sense of Residents’ Safety," Energies, MDPI, vol. 14(17), pages 1-16, September.
    9. Parul Gupta & Sumedha Chauhan & M. P. Jaiswal, 2019. "Classification of Smart City Research - a Descriptive Literature Review and Future Research Agenda," Information Systems Frontiers, Springer, vol. 21(3), pages 661-685, June.
    10. Schiavone, Francesco & Paolone, Francesco & Mancini, Daniela, 2019. "Business model innovation for urban smartization," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 210-219.
    11. Joanna Wyrwa & Magdalena ZaraÅ› & Katarzyna Wolak, 2021. "Smart Solutions in Cities during the Covid-19 Pandemic," Virtual Economics, The London Academy of Science and Business, vol. 4(2), pages 88-103, April.
    12. Clement, Dr. Jessica & Crutzen, Prof. Nathalie, 2021. "How Local Policy Priorities Set the Smart City Agenda," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    13. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 56-69.
    14. Camboim, Guilherme Freitas & Zawislak, Paulo Antônio & Pufal, Nathália Amarante, 2019. "Driving elements to make cities smarter: Evidences from European projects," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 154-167.
    15. Li Zhao & Zhi-ying Tang & Xin Zou, 2019. "Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    16. Nripendra P. Rana & Sunil Luthra & Sachin Kumar Mangla & Rubina Islam & Sian Roderick & Yogesh K. Dwivedi, 2019. "Barriers to the Development of Smart Cities in Indian Context," Information Systems Frontiers, Springer, vol. 21(3), pages 503-525, June.
    17. Wang, Mengmeng & Zhou, Tao & Wang, Di, 2020. "Tracking the evolution processes of smart cities in China by assessing performance and efficiency," Technology in Society, Elsevier, vol. 63(C).
    18. Maria Vincenza Ciasullo & Orlando Troisi & Mara Grimaldi & Daniele Leone, 2020. "Multi-level governance for sustainable innovation in smart communities: an ecosystems approach," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1167-1195, December.
    19. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    20. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7165-:d:582501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.