IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2622-d337175.html
   My bibliography  Save this article

Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling

Author

Listed:
  • Phong Tung Nguyen

    (Vietnam Academy for Water Resources, Hanoi 100000, Vietnam)

  • Duong Hai Ha

    (Institute for Water and Environment, Hanoi 100000, Vietnam)

  • Huu Duy Nguyen

    (Faculty of Geography, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 100000, Vietnam)

  • Tran Van Phong

    (Institute of Geological Sciences, Vietnam Academy of Sciences and Technology, 84 Chua Lang Street, Dong da, Hanoi 100000, Vietnam)

  • Phan Trong Trinh

    (Institute of Geological Sciences, Vietnam Academy of Sciences and Technology, 84 Chua Lang Street, Dong da, Hanoi 100000, Vietnam)

  • Nadhir Al-Ansari

    (Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden)

  • Hiep Van Le

    (University of Transport Technology, Hanoi 100000, Vietnam)

  • Binh Thai Pham

    (University of Transport Technology, Hanoi 100000, Vietnam)

  • Lanh Si Ho

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Indra Prakash

    (Department of Science & Technology, Bhaskarcharya Institute for Space Applications and Geo-Informatics (BISAG), Government of Gujarat, Gandhinagar 382002, India)

Abstract

Groundwater is one of the most important sources of fresh water all over the world, especially in those countries where rainfall is erratic, such as Vietnam. Nowadays, machine learning (ML) models are being used for the assessment of groundwater potential of the region. Credal decision trees (CDT) is one of the ML models which has been used in such studies. In the present study, the performance of the CDT has been improved using various ensemble frameworks such as Bagging, Dagging, Decorate, Multiboost, and Random SubSpace. Based on these methods, five hybrid models, namely BCDT, Dagging-CDT, Decorate-CDT, MBCDT, and RSSCDT, were developed and applied for groundwater potential mapping of DakLak province of Vietnam. Data of 227 groundwater wells of the study area were utilized for the construction and validation of the models. Twelve groundwater potential conditioning factors, namely rainfall, slope, elevation, river density, Sediment Transport Index (STI), curvature, flow direction, aspect, soil, land use, Topographic Wetness Index (TWI), and geology, were considered for the model studies. Various statistical measures, including area under receiver operating characteristic ( AUC ) curve, were applied to validate and compare the performance of the models. The results show that performance of the hybrid CDT ensemble models MBCDT ( AUC = 0.770), BCDT ( AUC = 0.731), Dagging-CDT ( AUC = 0.763), Decorate-CDT ( AUC = 0.750), and RSSCDT ( AUC = 0.766) improved significantly in comparison to the single CDT ( AUC = 0.722) model. Therefore, these developed hybrid models can be applied for better ground water potential mapping and groundwater resources management of the study area as well as other regions of the world.

Suggested Citation

  • Phong Tung Nguyen & Duong Hai Ha & Huu Duy Nguyen & Tran Van Phong & Phan Trong Trinh & Nadhir Al-Ansari & Hiep Van Le & Binh Thai Pham & Lanh Si Ho & Indra Prakash, 2020. "Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling," Sustainability, MDPI, vol. 12(7), pages 1-28, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2622-:d:337175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binh Thai Pham & Ataollah Shirzadi & Himan Shahabi & Ebrahim Omidvar & Sushant K. Singh & Mehebub Sahana & Dawood Talebpour Asl & Baharin Bin Ahmad & Nguyen Kim Quoc & Saro Lee, 2019. "Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    2. Binh Thai Pham & Dieu Tien Bui & Indra Prakash & M. B. Dholakia, 2016. "Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 97-127, August.
    3. Amarasinghe, Upali A. & Smakhtin, Vladimir., 2014. "Global water demand projections: past, present and future," IWMI Research Reports H046577, International Water Management Institute.
    4. Seyed Amir Naghibi & Kourosh Ahmadi & Alireza Daneshi, 2017. "Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2761-2775, July.
    5. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    6. Amarasinghe, Upali A. & Smakhtin, Vladimir, 2014. "Global water demand projections: past, present and future," IWMI Reports 201006, International Water Management Institute.
    7. Viet-Tien Nguyen & Trong Hien Tran & Ngoc Anh Ha & Van Liem Ngo & Al-Ansari Nadhir & Van Phong Tran & Huu Duy Nguyen & Malek M. A. & Ata Amini & Indra Prakash & Lanh Si Ho & Binh Thai Pham, 2019. "GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    8. Soyoung Park & Se-Yeong Hamm & Hang-Tak Jeon & Jinsoo Kim, 2017. "Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    9. Saeid Janizadeh & Mohammadtaghi Avand & Abolfazl Jaafari & Tran Van Phong & Mahmoud Bayat & Ebrahim Ahmadisharaf & Indra Prakash & Binh Thai Pham & Saro Lee, 2019. "Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    10. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    2. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    3. Kouao Laurent Kouadio & Jianxin Liu & Serge Kouamelan Kouamelan & Rong Liu, 2023. "Ensemble Learning Paradigms for Flow Rate Prediction Boosting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4413-4431, September.
    4. Ali Azedou & Said Lahssini & Abdellatif Khattabi & Modeste Meliho & Nabil Rifai, 2021. "A Methodological Comparison of Three Models for Gully Erosion Susceptibility Mapping in the Rural Municipality of El Faid (Morocco)," Sustainability, MDPI, vol. 13(2), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    2. Viet-Tien Nguyen & Trong Hien Tran & Ngoc Anh Ha & Van Liem Ngo & Al-Ansari Nadhir & Van Phong Tran & Huu Duy Nguyen & Malek M. A. & Ata Amini & Indra Prakash & Lanh Si Ho & Binh Thai Pham, 2019. "GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    3. Yong Ye & Wei Chen & Guirong Wang & Weifeng Xue, 2022. "Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5461-5494, November.
    4. Sk Ajim Ali & Farhana Parvin & Quoc Bao Pham & Khaled Mohamed Khedher & Mahro Dehbozorgi & Yasin Wahid Rabby & Duong Tran Anh & Duc Hiep Nguyen, 2022. "An ensemble random forest tree with SVM, ANN, NBT, and LMT for landslide susceptibility mapping in the Rangit River watershed, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1601-1633, September.
    5. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    6. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    7. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    8. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Yufeng Luo & Seydou Traore & Xinwei Lyu & Weiguang Wang & Ying Wang & Yongyu Xie & Xiyun Jiao & Guy Fipps, 2015. "Medium Range Daily Reference Evapotranspiration Forecasting by Using ANN and Public Weather Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3863-3876, August.
    10. Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    11. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    12. Nassima Amiri & Rachid Lahlali & Said Amiri & Moussa EL Jarroudi & Mohammed Yacoubi Khebiza & Mohammed Messouli, 2021. "Development of an Integrated Model to Assess the Impact of Agricultural Practices and Land Use on Agricultural Production in Morocco under Climate Stress over the Next Twenty Years," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    13. Liu, Jing & Hertel, Thomas W. & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz C. & Grogan, Danielle S. & Frolking, Steve, 2017. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Security and Land Use," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258118, Agricultural and Applied Economics Association.
    14. Xiao-Jun Wang & Jian-Yun Zhang & Shamsuddin Shahid & Wei Xie & Chao-Yang Du & Xiao-Chuan Shang & Xu Zhang, 2018. "Modeling domestic water demand in Huaihe River Basin of China under climate change and population dynamics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 911-924, April.
    15. Viet-Ha Nhu & Ayub Mohammadi & Himan Shahabi & Baharin Bin Ahmad & Nadhir Al-Ansari & Ataollah Shirzadi & John J. Clague & Abolfazl Jaafari & Wei Chen & Hoang Nguyen, 2020. "Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment," IJERPH, MDPI, vol. 17(14), pages 1-23, July.
    16. David D. J. Antia, 2016. "ZVI (Fe 0 ) Desalination: Stability of Product Water," Resources, MDPI, vol. 5(1), pages 1-47, March.
    17. Indrajit Chowdhuri & Subodh Chandra Pal & Rabin Chakrabortty & Sadhan Malik & Biswajit Das & Paramita Roy, 2021. "Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 697-722, May.
    18. A. Narayanamoorthy & N. Devika & M. Bhattarai, 2016. "More Crop and Profit per Drop of Water: Drip Irrigation for Empowering Distressed Small Farmers," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 83-90, January.
    19. Narayanamoorthy, A & Bhattarai, M & Jothi, P, 2018. "An assessment of the economic impact of drip irrigation in vegetable production in India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 31(1).
    20. Arowoshegbe, Amos & Emeni, Francis & Uniamikogbo, Emmanuel, 2018. "Impact Of Water Accounting On Water Supply In Nigeria," International Journal of Contemporary Accounting Issues-IJCAI (formerly International Journal of Accounting & Finance IJAF), The Institute of Chartered Accountants of Nigeria (ICAN), vol. 7(2), pages 160-183, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2622-:d:337175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.