IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p9807-d450194.html
   My bibliography  Save this article

A SWOT Analysis of the UK EV Battery Supply Chain

Author

Listed:
  • Yun Zhang

    (School of Economics, Wuhan University of Technology, Wuhan 430070, China)

  • Louise Rysiecki

    (Southampton Business School, University of Southampton, Southampton SO17 1BJ, UK)

  • Yu Gong

    (Southampton Business School, University of Southampton, Southampton SO17 1BJ, UK)

  • Qi Shi

    (School of Business Administration, Guizhou University of Finance and Economics, Gui Yang 550025, China)

Abstract

The aim of this research is to identify and explore the UK electric vehicle (EV) battery industry’s supply chain strengths, weaknesses, opportunities and threats (SWOT) by taking a leading UK EV battery company as an exploratory case study. Our research addresses the gap in knowledge surrounding the UK EV battery supply chain, as the current literature is limited whilst demands for EVs are surging. There are significant opportunities awaiting the EV battery industry, though it is crucial that companies are aware of the threats facing them. To address the gap, this research followed an exploratory qualitative research design using semi-structured interviews with experienced interviewees in the industry. By applying the SWOT analysis framework and the theory lens of Resource Based View (RBV), we suggest that the UK EV battery industry should diversify its supply base into multiple regions such as India, Africa, and the US, which would reduce the reliance on sourcing from China whilst maintaining good supplier relationships and continuous innovation.

Suggested Citation

  • Yun Zhang & Louise Rysiecki & Yu Gong & Qi Shi, 2020. "A SWOT Analysis of the UK EV Battery Supply Chain," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9807-:d:450194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/9807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/9807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Groenewald, Jakobus & Grandjean, Thomas & Marco, James, 2017. "Accelerated energy capacity measurement of lithium-ion cells to support future circular economy strategies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 98-111.
    2. Rengarajan, Srinath, 2019. "Letter to the Editor: Complementing the Tesla Forum EV Discussion with a View Upstream," Management and Organization Review, Cambridge University Press, vol. 15(1), pages 201-205, March.
    3. Ma, Hongrui & Balthasar, Felix & Tait, Nigel & Riera-Palou, Xavier & Harrison, Andrew, 2012. "A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles," Energy Policy, Elsevier, vol. 44(C), pages 160-173.
    4. repec:cup:maorev:v:15:y:2019:i:01:p:201-205_00 is not listed on IDEAS
    5. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    6. Christian Thiel & Anastasios Tsakalidis & Arnulf Jäger-Waldau, 2020. "Will Electric Vehicles Be Killed (again) or Are They the Next Mobility Killer App?," Energies, MDPI, vol. 13(7), pages 1-10, April.
    7. Emma Brandon-Jones & Brian Squire & Chad W. Autry & Kenneth J. Petersen, 2014. "A Contingent Resource-Based Perspective of Supply Chain Resilience and Robustness," Journal of Supply Chain Management, Institute for Supply Management, vol. 50(3), pages 55-73, July.
    8. Grosjean, Camille & Miranda, Pamela Herrera & Perrin, Marion & Poggi, Philippe, 2012. "Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1735-1744.
    9. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    10. Mayyas, Ahmad & Qattawi, Ala & Omar, Mohammed & Shan, Dongri, 2012. "Design for sustainability in automotive industry: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1845-1862.
    11. Speirs, Jamie & Contestabile, Marcello & Houari, Yassine & Gross, Robert, 2014. "The future of lithium availability for electric vehicle batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 183-193.
    12. Dyson, Robert G., 2004. "Strategic development and SWOT analysis at the University of Warwick," European Journal of Operational Research, Elsevier, vol. 152(3), pages 631-640, February.
    13. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laene Oliveira Soares & Augusto da Cunha Reis & Pedro Senna Vieira & Luis Hernández-Callejo & Ronney Arismel Mancebo Boloy, 2023. "Electric Vehicle Supply Chain Management: A Bibliometric and Systematic Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    2. Chin-Tsai Lin & Cheng-Yu Chiang, 2022. "Development of Strategies for Taiwan’s Corrugated Box Precision Printing Machine Industry—An Implementation for SWOT and EDAS Methods," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    3. Árpád Tóth & Cecília Szigeti & Alex Suta, 2021. "Carbon Accounting Measurement with Digital Non-Financial Corporate Reporting and a Comparison to European Automotive Companies Statements," Energies, MDPI, vol. 14(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    2. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    3. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    6. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    7. Wang, Jiajia & Yue, Xiyan & Wang, Peifen & Yu, Tao & Du, Xiao & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2022. "Electrochemical technologies for lithium recovery from liquid resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    9. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    10. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    11. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    12. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    13. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    14. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    15. Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
    16. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    17. Nuri Cihat Onat & Murat Kucukvar & Omer Tatari, 2014. "Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles," Sustainability, MDPI, vol. 6(12), pages 1-38, December.
    18. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
    19. John D. Graham & John A. Rupp & Eva Brungard, 2021. "Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    20. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9807-:d:450194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.