IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7028-d405605.html
   My bibliography  Save this article

Towards Sustainable Management of Mineral Fertilizers in China: An Integrative Analysis and Review

Author

Listed:
  • Xiaomin Yu

    (Faculty of Agricultural Sciences, University of Hohenheim, Schwerzstr. 42, 70593 Stuttgart, Germany)

  • Haigang Li

    (College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Reiner Doluschitz

    (Faculty of Agricultural Sciences, University of Hohenheim, Schwerzstr. 42, 70593 Stuttgart, Germany)

Abstract

China has not only successfully fed 20% of the world’s population using only 9% of the world’s arable land; it has also become the world’s largest producer of various agricultural products. The widespread application of mineral fertilizers played a critical role in accomplishing this achievement. In this study, we conducted an integrative analysis of China’s mineral fertilizers over the last six decades from multiple perspectives—domestic production, consumption and international trade at national and international levels, and the agricultural use of fertilizers at a regional level. In addition, we quantitatively estimated fertilizer nutrient surpluses for 30 provinces in mainland China for the time period spanning from 1987 to 2018 and integrated the results as a reference to the evaluation of the implementation of the Zero Growth Action Plan regulating fertilizer use by 2020. We concluded that by 2019, 83% and 93% of the provinces had already achieved zero growth in fertilizer use and fertilizer nutrient surpluses, respectively. This shows promising potential for China in finalising the Zero Growth Action Plan of Fertilizers nationwide by 2020.

Suggested Citation

  • Xiaomin Yu & Haigang Li & Reiner Doluschitz, 2020. "Towards Sustainable Management of Mineral Fertilizers in China: An Integrative Analysis and Review," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7028-:d:405605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Songqing Jin & Jikun Huang & Ruifa Hu & Scott Rozelle, 2002. "The Creation and Spread of Technology and Total Factor Productivity in China's Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 916-930.
    2. Li Jiang & Zhihui Li, 2016. "Urbanization and the Change of Fertilizer Use Intensity for Agricultural Production in Henan Province," Sustainability, MDPI, vol. 8(2), pages 1-12, February.
    3. Feder, Gershon & Lau, Lawrence J & Lin, Justin Y & Luo, Xiaopeng, 1992. "The Determinants of Farm Investment and Residential Construction in Post-Reform China," Economic Development and Cultural Change, University of Chicago Press, vol. 41(1), pages 1-26, October.
    4. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    5. Cao, Kang Hua & Birchenall, Javier A., 2013. "Agricultural productivity, structural change, and economic growth in post-reform China," Journal of Development Economics, Elsevier, vol. 104(C), pages 165-180.
    6. Wang, Mengru & Ma, Lin & Strokal, Maryna & Chu, Yanan & Kroeze, Carolien, 2018. "Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China," Agricultural Systems, Elsevier, vol. 163(C), pages 58-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiongsheng Yu & Yong Liu & Mu Zhang & Shaoying Ai & Rongping Wang & Li’an Zhu & Huihua Zhang & Ting Li & Yaqi Zhu & Chao Tu & Qihao Yang & Zili Zhang & Minglong Liu, 2021. "Coupled Effects of Reduced Chemical Fertilization and Biochar Supplementation on Availability and Transformations of Nitrogen and Phosphorus in Vegetable Farmland Soil: An In Situ Study in Southern Ch," Agriculture, MDPI, vol. 11(10), pages 1-23, October.
    2. He Huang & Yong Zhou & Yu-Jie Liu & Liang Xiao & Ke Li & Meng-Yao Li & Yang Tian & Fei Wu, 2021. "Source Apportionment and Ecological Risk Assessment of Potentially Toxic Elements in Cultivated Soils of Xiangzhou, China: A Combined Approach of Geographic Information System and Random Forest," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    3. Zhongfang Zhang & Lijun Hou & Yuhao Qian & Xing Wan, 2022. "Effect of Zero Growth of Fertilizer Action on Ecological Efficiency of Grain Production in China under the Background of Carbon Emission Reduction," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    4. Gutiérrez-Moya, Ester & Lozano, Sebastián & Adenso-Díaz, Belarmino, 2023. "A pre-pandemic analysis of the global fertiliser trade network," Resources Policy, Elsevier, vol. 85(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yumei & Diao, Xinshen, 2020. "The changing role of agriculture with economic structural change – The case of China," China Economic Review, Elsevier, vol. 62(C).
    2. Ahmad Bathaei & Dalia Štreimikienė, 2023. "A Systematic Review of Agricultural Sustainability Indicators," Agriculture, MDPI, vol. 13(2), pages 1-19, January.
    3. Lijing Zhang & Mingyong Hong & Xiaolin Guo & Wenrong Qian, 2022. "How Does Land Rental Affect Agricultural Labor Productivity? An Empirical Study in Rural China," Land, MDPI, vol. 11(5), pages 1-19, April.
    4. Zhangqi Zhong & Yiqin Hu & Lei Jiang, 2019. "Impact of Climate Change on Agricultural Total Factor Productivity Based on Spatial Panel Data Model: Evidence from China," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    5. Chih-HAI YANG & Leah WU & Hui-Lin LIN, 2010. "Analysis of total-factor cultivated land efficiency in China's agriculture," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 56(5), pages 231-242.
    6. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    7. Jia, Lili, 2012. "Land fragmentation and off-farm labor supply in China," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 66, number 66.
    8. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    9. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    10. Qiuqiong Huang & David Dawe & Scott Rozelle & Jikun Huang & Jinxia Wang, 2005. "Irrigation, poverty and inequality in rural China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 49(2), pages 159-175, June.
    11. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    12. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    13. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    14. Tasso Adamopoulos & Loren Brandt & Chaoran Chen & Diego Restuccia & Xiaoyun Wei, 2022. "Land Security and Mobility Frictions," Working Papers tecipa-717, University of Toronto, Department of Economics.
    15. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    17. Li Yu & Zhanqi Wang & Hongwei Zhang & Chao Wei, 2020. "Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    18. Kapri, Kul & Ghimire, Shankar, 2020. "Migration, remittance, and agricultural productivity: Evidence from the Nepal Living Standard Survey," World Development Perspectives, Elsevier, vol. 19(C).
    19. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    20. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7028-:d:405605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.