IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i13p5396-d380131.html
   My bibliography  Save this article

Scalable Life-Cycle Inventory for Heavy-Duty Vehicle Production

Author

Listed:
  • Sebastian Wolff

    (Institute of Automotive Technology, Technical University of Munich, Boltzmannstraße 15, 85748 Munich, Germany)

  • Moritz Seidenfus

    (Institute of Automotive Technology, Technical University of Munich, Boltzmannstraße 15, 85748 Munich, Germany)

  • Karim Gordon

    (Institute of Automotive Technology, Technical University of Munich, Boltzmannstraße 15, 85748 Munich, Germany)

  • Sergio Álvarez

    (Institute of Automotive Technology, Technical University of Munich, Boltzmannstraße 15, 85748 Munich, Germany)

  • Svenja Kalt

    (Institute of Automotive Technology, Technical University of Munich, Boltzmannstraße 15, 85748 Munich, Germany)

  • Markus Lienkamp

    (Institute of Automotive Technology, Technical University of Munich, Boltzmannstraße 15, 85748 Munich, Germany)

Abstract

The transportation sector needs to significantly lower greenhouse gas emissions. European manufacturers in particular must develop new vehicles and powertrains to comply with recent regulations and avoid fines for exceeding C O 2 emissions. To answer the question regarding which powertrain concept provides the best option to lower the environmental impacts, it is necessary to evaluate all vehicle life-cycle phases. Different system boundaries and scopes of the current state of science complicate a holistic impact assessment. This paper presents a scaleable life-cycle inventory (LCI) for heavy-duty trucks and powertrains components. We combine primary and secondary data to compile a component-based inventory and apply it to internal combustion engine (ICE), hybrid and battery electric vehicles (BEV). The vehicles are configured with regard to their powertrain topology and the components are scaled according to weight models. The resulting material compositions are modeled with LCA software to obtain global warming potential and primary energy demand. Especially for BEV, decisions in product development strongly influence the vehicle’s environmental impact. Our results show that the lithium-ion battery must be considered the most critical component for electrified powertrain concepts. Furthermore, the results highlight the importance of considering the vehicle production phase.

Suggested Citation

  • Sebastian Wolff & Moritz Seidenfus & Karim Gordon & Sergio Álvarez & Svenja Kalt & Markus Lienkamp, 2020. "Scalable Life-Cycle Inventory for Heavy-Duty Vehicle Production," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5396-:d:380131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/13/5396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/13/5396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
    2. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    3. Ma, Hongrui & Balthasar, Felix & Tait, Nigel & Riera-Palou, Xavier & Harrison, Andrew, 2012. "A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles," Energy Policy, Elsevier, vol. 44(C), pages 160-173.
    4. Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
    5. Bo Tranberg & Olivier Corradi & Bruno Lajoie & Thomas Gibon & Iain Staffell & Gorm Bruun Andresen, 2018. "Real-Time Carbon Accounting Method for the European Electricity Markets," Papers 1812.06679, arXiv.org, revised May 2019.
    6. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Lagnelöv & Gunnar Larsson & Anders Larsolle & Per-Anders Hansson, 2021. "Life Cycle Assessment of Autonomous Electric Field Tractors in Swedish Agriculture," Sustainability, MDPI, vol. 13(20), pages 1-24, October.
    2. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    3. Sam Simons & Ulugbek Azimov, 2021. "Comparative Life Cycle Assessment of Propulsion Systems for Heavy-Duty Transport Applications," Energies, MDPI, vol. 14(11), pages 1-18, May.
    4. Sebastian Wolff & Svenja Kalt & Manuel Bstieler & Markus Lienkamp, 2021. "Influence of Powertrain Topology and Electric Machine Design on Efficiency of Battery Electric Trucks—A Simulative Case-Study," Energies, MDPI, vol. 14(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    2. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2023. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Working Paper Series in Production and Energy 69, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    3. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    4. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    5. Marmiroli, Benedetta & Venditti, Mattia & Dotelli, Giovanni & Spessa, Ezio, 2020. "The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles," Applied Energy, Elsevier, vol. 260(C).
    6. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    7. Crossin, Enda & Doherty, Peter J.B., 2016. "The effect of charging time on the comparative environmental performance of different vehicle types," Applied Energy, Elsevier, vol. 179(C), pages 716-726.
    8. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    9. Robin Smit & Daniel William Kennedy, 2022. "Greenhouse Gas Emissions Performance of Electric and Fossil-Fueled Passenger Vehicles with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    10. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    11. Farrell, Katharine N. & Löw Beer, David, 2019. "Producing the ecological economy: A study in developing fiduciary principles supporting the application of flow-fund consistent investment criteria for sovereign wealth funds," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    12. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
    13. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    14. Chen, Feng & Taylor, Nathaniel & Kringos, Nicole, 2015. "Electrification of roads: Opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 109-119.
    15. Jani Das, 2022. "Comparative life cycle GHG emission analysis of conventional and electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13294-13333, November.
    16. Flórez-Orrego, Daniel & da Silva, Julio A.M. & Velásquez, Héctor & de Oliveira, Silvio, 2015. "Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector," Energy, Elsevier, vol. 88(C), pages 18-36.
    17. Wu, Tian & Ma, Lin & Mao, Zhonggen & Ou, Xunmin, 2015. "Setting up charging electric stations within residential communities in current China: Gaming of government agencies and property management companies," Energy Policy, Elsevier, vol. 77(C), pages 216-226.
    18. Ensslen, Axel & Schücking, Maximilian & Jochem, Patrick & Steffens, Henning & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Empirical carbon dioxide emissions of electric vehicles in a French-German commuter fleet test," MPRA Paper 91600, University Library of Munich, Germany.
    19. Kang, Zixuan & Ye, Zhongnan & Lam, Chor-Man & Hsu, Shu-Chien, 2023. "Sustainable electric vehicle charging coordination: Balancing CO2 emission reduction and peak power demand shaving," Applied Energy, Elsevier, vol. 349(C).
    20. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5396-:d:380131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.