IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4541-d366658.html
   My bibliography  Save this article

Riding Comfort Evaluation Based on Longitudinal Acceleration for Urban Rail Transit—Mathematical Models and Experiments in Beijing Subway

Author

Listed:
  • Huiru Ma

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Dewang Chen

    (College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China)

  • Jiateng Yin

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

Abstract

Riding comfort is an important index to measure the quality of service for railways, especially for congested urban rail transit systems where the majority of passengers cannot find a seat. Existing studies usually employ the value of longitudinal acceleration as the key indicator to evaluate the riding comfort of vehicles, while there is no validated mathematical models to evaluate the riding comfort of urban rail trains from the perspective of passengers. This paper aims to employ the collected longitudinal acceleration data and passengers’ feedback data in Beijing subway to qualitatively measure and validate the riding comfort of transit trains. First, we develop four regular fuzzy sets based comfort measurement models, where the parameters of the fuzzy sets are determined by experiences of domain experts and the field data. Then a combinational model is given by averaging the four regular fuzzy set models to elaborate a comprehensive measurement for the riding comfort. In order to verify the developed models, we conducted a questionnaire survey in Beijing subway. The surveyed riding comfort data from passengers and the measured acceleration data are used to validate and optimize the proposed models. Two key parameters are deduced to describe all parameters in the fuzzy set models and a meta-heuristic algorithm is applied to optimize the parameters and weight coefficients of the combinational model. Comparing the collected comfort data with the comfort levels and values calculated by different models shows that the averaging model is better than any regular fuzzy set model. Furthermore, the optimized model is better than the averaging model and provides the best accuracy and robustness for riding comfort measurement. The models provided in this paper offer an optional way to measure the riding comfort for further assessment and more comprehensively tuning of train control systems.

Suggested Citation

  • Huiru Ma & Dewang Chen & Jiateng Yin, 2020. "Riding Comfort Evaluation Based on Longitudinal Acceleration for Urban Rail Transit—Mathematical Models and Experiments in Beijing Subway," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4541-:d:366658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santika, Truly & Hutchinson, Michael F., 2009. "The effect of species response form on species distribution model prediction and inference," Ecological Modelling, Elsevier, vol. 220(19), pages 2365-2379.
    2. Huang, Yeran & Mannino, Carlo & Yang, Lixing & Tang, Tao, 2020. "Coupling time-indexed and big-M formulations for real-time train scheduling during metro service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 38-61.
    3. Lyons, Glenn & Hammond, Paul & Mackay, Kate, 2020. "Reprint of: The importance of user perspective in the evolution of MaaS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 20-34.
    4. Sakdirat Kaewunruen & Victor Martin, 2018. "Life Cycle Assessment of Railway Ground-Borne Noise and Vibration Mitigation Methods Using Geosynthetics, Metamaterials and Ground Improvement," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Liu & Suihuai Yu & Jianjie Chu, 2020. "Comfort Evaluation of an Aircraft Cabin System Employing a Hybrid Model," Sustainability, MDPI, vol. 12(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Nastasi & Luca Fredianelli & Marco Bernardini & Luca Teti & Francesco Fidecaro & Gaetano Licitra, 2020. "Parameters Affecting Noise Emitted by Ships Moving in Port Areas," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    2. Barker, Justin R. & MacIsaac, Hugh J., 2022. "Species distribution models: Administrative boundary centroid occurrences require careful interpretation," Ecological Modelling, Elsevier, vol. 472(C).
    3. Huang, Minyi & Kong, Xiaoquan & Varela, Sara & Duan, Renyan, 2016. "The Niche Limitation Method (NicheLim), a new algorithm for generating virtual species to study biogeography," Ecological Modelling, Elsevier, vol. 320(C), pages 197-202.
    4. Smith, Göran & Hensher, David A., 2020. "Towards a framework for Mobility-as-a-Service policies," Transport Policy, Elsevier, vol. 89(C), pages 54-65.
    5. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    6. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    7. Wang, Xuekai & D’Ariano, Andrea & Su, Shuai & Tang, Tao, 2023. "Cooperative train control during the power supply shortage in metro system: A multi-agent reinforcement learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 244-278.
    8. Zhiyuan Yu & Doudou Jin & Xiaoxiao Song & Chao Zhai & Desheng Wang, 2020. "Internet of Vehicle Empowered Mobile Media Scenarios: In-Vehicle Infotainment Solutions for the Mobility as a Service (MaaS)," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    9. Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
    10. Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
    11. Yin, Jiateng & Wang, Miao & D’Ariano, Andrea & Zhang, Jinlei & Yang, Lixing, 2023. "Synchronization of train timetables in an urban rail network: A bi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    12. Yang, Tiannuo & Chu, Zhongzhu & Wang, Bailin, 2023. "Feasibility on the integration of passenger and freight transportation in rural areas: A service mode and an optimization model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    13. Sakdirat Kaewunruen & Zhangjun Qin, 2020. "Sustainability of Vibration Mitigation Methods Using Meta-Materials/Structures along Railway Corridors Exposed to Adverse Weather Conditions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    14. Duan, Sophia Xiaoxia & Tay, Richard & Molla, Alemayehu & Deng, Hepu, 2022. "Predicting Mobility as a Service (MaaS) use for different trip categories: An artificial neural network analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 135-149.
    15. Medina-Molina, Cayetano & Pérez-Macías, Noemí & Fernández-Fernádez, José Luis, 2023. "The use of micromobility in different contexts. An explanation through the multilevel perspective and QCA," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    16. Maria Vittoria Corazza & Giordano Carassiti, 2021. "Investigating Maturity Requirements to Operate Mobility as a Service: The Rome Case," Sustainability, MDPI, vol. 13(15), pages 1-31, July.
    17. Libor Ižvolt & Peter Dobeš & Zuzana Papánová & Martin Mečár, 2024. "Experimental Monitoring of Dynamic Parameters of the Sub-Ballast Layers as a Prerequisite for a High-Quality and Sustainable Railway Line," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    18. Ján Ďungel & Peter Zvolenský & Juraj Grenčík & Lukáš Leštinský & Ján Krivda, 2021. "Localization of Increased Noise at Operating Speed of a Passenger Wagon," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    19. Nahyun Kwon & Joosung Lee & Moonsun Park & Inseok Yoon & Yonghan Ahn, 2019. "Performance Evaluation of Distance Measurement Methods for Construction Noise Prediction Using Case-Based Reasoning," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    20. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4541-:d:366658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.