IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8742-d432483.html
   My bibliography  Save this article

Parameters Affecting Noise Emitted by Ships Moving in Port Areas

Author

Listed:
  • Marco Nastasi

    (Physics Department, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy)

  • Luca Fredianelli

    (Physics Department, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy)

  • Marco Bernardini

    (CNR-INM Section of Acoustics and Sensors O.M. Corbino, via del Fosso del Cavaliere 100, 00133 Rome, Italy)

  • Luca Teti

    (iPOOL S.r.l., via Cocchi 7, 56121 Pisa, Italy)

  • Francesco Fidecaro

    (Physics Department, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy)

  • Gaetano Licitra

    (Environmental Protection Agency of Tuscany Region, Pisa Department, 56127 Pisa, Italy)

Abstract

Only recently has noise been considered in the assessment of the sustainability of port infrastructures, after decades of unawareness. INTERREG Maritime projects unveiled problems that have been neglected so far, such as the lack of proper regulation and noise exposure assessments for citizens. While it is true that a port area includes a huge variety of possible noise sources, very few of them have been characterized from an acoustical point of view. INTERREG projects have boosted research in the field, and previous studies have dealt with noise produced by moving ships in ports. The present work starts from a previous measurement campaign used to obtain broadband and 1/3-octave-band noise emissions of moving ships, and it aims to explain their uncertainties. More than a month’s worth of continuous acoustic measurements and video recordings were deeply analyzed in order to obtain an input database that is as precise as possible. A multiple regression analysis was performed in order to understand the influence that parameters such as minimum distance, speed, and draught have on ships’ noise emissions, which were calculated using pass-by measurements, with a special focus on ferries. The minimum distance of each ship’s passage from the microphone was measured using a video recording with an innovative methodology, providing results with 3 m of uncertainty. Knowing which parameter is more influential would help in planning proper measurements for monitoring or for drafting correct guidelines. Draught was determined to be uninfluential in ferries’ noise emissions, while the minimum distance and speed relations were estimated and accounted for in the calculation of a refined sound power level. From a spectrum point of view, the frequencies from 500 Hz to 2.5 kHz were determined to be those that contributed the most to the noise produced by the transit of a ship, and they vary with speed. With the studied corrections, different ferry models resulted in similar noise emissions. The standard deviation of noise emitted was reduced by 0.5 dB (A), and the average was also improved by positioning the ships’ flow at the correct average minimum distance. Furthermore, the right placement of a source is also important in the acoustic mapping phase for a correct evaluation of the propagation of noise at a distance. The use of more precise input data is important for improving the output of acoustic propagation models during the assessment of port noise in the surrounding areas.

Suggested Citation

  • Marco Nastasi & Luca Fredianelli & Marco Bernardini & Luca Teti & Francesco Fidecaro & Gaetano Licitra, 2020. "Parameters Affecting Noise Emitted by Ships Moving in Port Areas," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8742-:d:432483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Fredianelli & Marco Nastasi & Marco Bernardini & Francesco Fidecaro & Gaetano Licitra, 2020. "Pass-by Characterization of Noise Emitted by Different Categories of Seagoing Ships in Ports," Sustainability, MDPI, vol. 12(5), pages 1-12, February.
    2. Anna Danihelová & Miroslav Němec & Tomáš Gergeľ & Miloš Gejdoš & Janka Gordanová & Patrik Sčensný, 2019. "Usage of Recycled Technical Textiles as Thermal Insulation and an Acoustic Absorber," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    3. Sakdirat Kaewunruen & Victor Martin, 2018. "Life Cycle Assessment of Railway Ground-Borne Noise and Vibration Mitigation Methods Using Geosynthetics, Metamaterials and Ground Improvement," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    4. Yong Tian & Lili Wan & Bojia Ye & Runze Yin & Dawei Xing, 2019. "Optimization Method for Reducing the Air Pollutant Emission and Aviation Noise of Arrival in Terminal Area," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifei Niu & Xi Wang & Ciyun Lin, 2022. "A Study on the Impact of Organizing Environmental Awareness and Education on the Performance of Environmental Governance in China," IJERPH, MDPI, vol. 19(19), pages 1-14, October.
    2. Luca Fredianelli & Peter Lercher & Gaetano Licitra, 2022. "New Indicators for the Assessment and Prevention of Noise Nuisance," IJERPH, MDPI, vol. 19(19), pages 1-5, October.
    3. Phillip Kim & Hunjae Ryu & Jong-June Jeon & Seo Il Chang, 2021. "Statistical Road-Traffic Noise Mapping Based on Elementary Urban Forms in Two Cities of South Korea," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    4. Samuele Schiavoni & Francesco D’Alessandro & Davide Borelli & Luca Fredianelli & Tomaso Gaggero & Corrado Schenone & Giorgio Baldinelli, 2022. "Airborne Sound Power Levels and Spectra of Noise Sources in Port Areas," IJERPH, MDPI, vol. 19(17), pages 1-22, September.
    5. Simon Kanka & Luca Fredianelli & Francesco Artuso & Francesco Fidecaro & Gaetano Licitra, 2023. "Evaluation of Acoustic Comfort and Sound Energy Transmission in a Yacht," Energies, MDPI, vol. 16(2), pages 1-16, January.
    6. Luka Vukić & Vice Mihanović & Luca Fredianelli & Veljko Plazibat, 2021. "Seafarers’ Perception and Attitudes towards Noise Emission on Board Ships," IJERPH, MDPI, vol. 18(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Fredianelli & Marco Nastasi & Marco Bernardini & Francesco Fidecaro & Gaetano Licitra, 2020. "Pass-by Characterization of Noise Emitted by Different Categories of Seagoing Ships in Ports," Sustainability, MDPI, vol. 12(5), pages 1-12, February.
    2. Stefano Cascone & Gianpiero Evola & Antonio Gagliano & Gaetano Sciuto & Chiara Baroetto Parisi, 2019. "Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    3. Uros Pantelic & Petar Lilic & Aleksandar Cvjetic & Nikola Lilic, 2023. "Environmental Noise Impact Assessment for Large-Scale Surface Mining Operations in Serbia," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    4. Lei Yan & Zhou Chen & Yunfeng Zou & Xuhui He & Chenzhi Cai & Kehui Yu & Xiaojie Zhu, 2020. "Field Study of the Interior Noise and Vibration of a Metro Vehicle Running on a Viaduct: A Case Study in Guangzhou," IJERPH, MDPI, vol. 17(8), pages 1-14, April.
    5. Manuela Neri & Mariagrazia Pilotelli & Marco Traversi & Elisa Levi & Edoardo Alessio Piana & Mariasole Bannó & Eva Cuerva & Pablo Pujadas & Alfredo Guardo, 2021. "Conversion of End-of-Life Household Materials into Building Insulating Low-Cost Solutions for the Development of Vulnerable Contexts: Review and Outlook towards a Circular and Sustainable Economy," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    6. Huiru Ma & Dewang Chen & Jiateng Yin, 2020. "Riding Comfort Evaluation Based on Longitudinal Acceleration for Urban Rail Transit—Mathematical Models and Experiments in Beijing Subway," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    7. Sakdirat Kaewunruen & Zhangjun Qin, 2020. "Sustainability of Vibration Mitigation Methods Using Meta-Materials/Structures along Railway Corridors Exposed to Adverse Weather Conditions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    8. Ahmed Abdulkareem Ahmed Adulaimi & Biswajeet Pradhan & Subrata Chakraborty & Abdullah Alamri, 2021. "Traffic Noise Modelling Using Land Use Regression Model Based on Machine Learning, Statistical Regression and GIS," Energies, MDPI, vol. 14(16), pages 1-19, August.
    9. Libor Ižvolt & Peter Dobeš & Zuzana Papánová & Martin Mečár, 2024. "Experimental Monitoring of Dynamic Parameters of the Sub-Ballast Layers as a Prerequisite for a High-Quality and Sustainable Railway Line," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    10. Ján Ďungel & Peter Zvolenský & Juraj Grenčík & Lukáš Leštinský & Ján Krivda, 2021. "Localization of Increased Noise at Operating Speed of a Passenger Wagon," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    11. Nahyun Kwon & Joosung Lee & Moonsun Park & Inseok Yoon & Yonghan Ahn, 2019. "Performance Evaluation of Distance Measurement Methods for Construction Noise Prediction Using Case-Based Reasoning," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    12. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Fangzi Liu & Zihong Li & Hua Xie & Lei Yang & Minghua Hu, 2021. "Predicting Fuel Consumption Reduction Potentials Based on 4D Trajectory Optimization with Heterogeneous Constraints," Sustainability, MDPI, vol. 13(13), pages 1-33, June.
    14. Sakdirat Kaewunruen & Panrawee Rungskunroch & Joshua Welsh, 2018. "A Digital-Twin Evaluation of Net Zero Energy Building for Existing Buildings," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    15. Gregorio Bonocore & Pierantonio De Luca, 2022. "Preparation and Characterization of Insulating Panels from Recycled Polylaminate (Tetra Pak) Materials," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    16. Guillermo Rey Gozalo & Enrique Suárez & Alexandra L. Montenegro & Jorge P. Arenas & Juan Miguel Barrigón Morillas & David Montes González, 2020. "Noise Estimation Using Road and Urban Features," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    17. Marcin Wrótny & Janusz Bohatkiewicz, 2020. "Impact of Railway Noise on People Based on Strategic Acoustic Maps," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    18. Luka Vukić & Vice Mihanović & Luca Fredianelli & Veljko Plazibat, 2021. "Seafarers’ Perception and Attitudes towards Noise Emission on Board Ships," IJERPH, MDPI, vol. 18(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8742-:d:432483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.