IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2287-d223337.html
   My bibliography  Save this article

Spatial Pattern of the Unidirectional Trends in Thermal Bioclimatic Indicators in Iran

Author

Listed:
  • Sahar Hadi Pour

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
    Centre for Coastal and Ocean Engineering (COEI), Universiti Teknologi Malaysia (UTM), Kuala Lumpur 54100, Malaysia)

  • Ahmad Khairi Abd Wahab

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
    Centre for Coastal and Ocean Engineering (COEI), Universiti Teknologi Malaysia (UTM), Kuala Lumpur 54100, Malaysia)

  • Shamsuddin Shahid

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
    Centre for Coastal and Ocean Engineering (COEI), Universiti Teknologi Malaysia (UTM), Kuala Lumpur 54100, Malaysia)

  • Xiaojun Wang

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
    Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China)

Abstract

Changes in bioclimatic indicators can provide valuable information on how global warming induced climate change can affect humans, ecology and the environment. Trends in thermal bioclimatic indicators over the diverse climate of Iran were assessed in this study to comprehend their spatio-temporal changes in different climates. The gridded temperature data of Princeton Global Meteorological Forcing with a spatial resolution of 0.25° and temporal extent of 1948–2010 was used for this purpose. Autocorrelation and wavelets analyses were conducted to assess the presence of self-similarity and cycles in the data series. The modified version of the Mann–Kendall (MMK) test was employed to estimate unidirectional trends in 11 thermal bioclimatic indicators through removing the influence of natural cycles on trend significance. A large decrease in the number of grid points showing significant trends was noticed for the MMK in respect to the classical Mann–Kendall (MK) test which indicates that the natural variability of the climate should be taken into consideration in bioclimatic trend analyses in Iran. The unidirectional trends obtained using the MMK test revealed changes in almost all of the bioclimatic indicators in different parts of Iran, which indicates rising temperature have significantly affected the bioclimate of the country. The semi-dry region along the Persian Gulf in the south and mountainous region in the northeast were found to be more affected in terms of the changes in a number of bioclimatic indicators.

Suggested Citation

  • Sahar Hadi Pour & Ahmad Khairi Abd Wahab & Shamsuddin Shahid & Xiaojun Wang, 2019. "Spatial Pattern of the Unidirectional Trends in Thermal Bioclimatic Indicators in Iran," Sustainability, MDPI, vol. 11(8), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2287-:d:223337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y. Markonis & D. Koutsoyiannis, 2016. "Scale-dependence of persistence in precipitation records," Nature Climate Change, Nature, vol. 6(4), pages 399-401, April.
    2. Masoud Noshadi & Hossein Ahani, 2015. "Focus on relative humidity trend in Iran and its relationship with temperature changes during 1960–2005," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1451-1469, December.
    3. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    4. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqi Sun & Xiaojun Wang & Yixing Yin & Shamsuddin Shahid, 2021. "Analysis of historical drought and flood characteristics of Hengshui during the period 1649–2018: a typical city in North China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2081-2099, September.
    2. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    3. Najeebullah Khan & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim & Rawshan Ali, 2019. "Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    4. Mohammad Rajab Houmsi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Kamal Ahmed & Ghaith Falah Ziarh & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim, 2019. "Spatial Shift of Aridity and Its Impact on Land Use of Syria," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    5. Mohd Khairul Idlan Muhammad & Mohamed Salem Nashwan & Shamsuddin Shahid & Tarmizi bin Ismail & Young Hoon Song & Eun-Sung Chung, 2019. "Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    6. Mohammad Ahsan Uddin & ASM Maksud Kamal & Shamsuddin Shahid & Eun-Sung Chung, 2020. "Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    7. Mohammad Naser Sediqi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Rawshan Ali & Shadan Abubaker & Xiaojun Wang & Kamal Ahmed & Shamsuddin Shahid & Md. Asaduzzaman & Sayed Mir Agha Manawi, 2019. "Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    8. Saleem A. Salman & Shamsuddin Shahid & Haitham Abdulmohsin Afan & Mohammed Sanusi Shiru & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2020. "Changes in Climatic Water Availability and Crop Water Demand for Iraq Region," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    9. Mohammed Magdy Hamed & Mohamed Salem Nashwan & Tarmizi bin Ismail & Shamsuddin Shahid, 2022. "Projection of Thermal Bioclimate of Egypt for the Paris Agreement Goals," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    10. Linqi Li & Hongwu Zhang & Lin Hou & Haobo Li, 2023. "An Improved Method and the Theoretical Equations for River Regulation Lines," Sustainability, MDPI, vol. 15(3), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    3. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    4. Hongli Wang & Yongxiang Zhang & Xuemei Shao, 2021. "A tree-ring-based drought reconstruction from 1466 to 2013 CE for the Aksu area, western China," Climatic Change, Springer, vol. 165(1), pages 1-16, March.
    5. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    6. Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
    7. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    8. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    9. Vladimir Marković & Imre Nagy & Andras Sik & Kinga Perge & Peter Laszlo & Maria Papathoma-Köhle & Catrin Promper & Thomas Glade, 2016. "Assessing drought and drought-related wildfire risk in Kanjiza, Serbia: the SEERISK methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 709-726, January.
    10. Chen, Zi-yue & Huang, Zhen-hai & Nie, Pu-yan, 2018. "Industrial characteristics and consumption efficiency from a nexus perspective – Based on Anhui’s Empirical Statistics," Energy Policy, Elsevier, vol. 115(C), pages 281-290.
    11. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    12. Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.
    13. Dongying Sun & Jiarong Gu & Junyu Chen & Xilin Xia & Zhisong Chen, 2022. "Spatiotemporal differentiation and influencing factors of urban water supply system resilience in the Yangtze River Delta urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 101-126, October.
    14. Shahzada Adnan & Kalim Ullah, 2020. "Development of drought hazard index for vulnerability assessment in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2989-3010, September.
    15. Pere Quintana-Seguí & Anaïs Barella-Ortiz & Sabela Regueiro-Sanfiz & Gonzalo Miguez-Macho, 2020. "The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2135-2156, May.
    16. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    17. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    18. L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
    19. Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
    20. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2287-:d:223337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.