IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p783-d824310.html
   My bibliography  Save this article

Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico

Author

Listed:
  • Francisco José Del-Toro-Guerrero

    (Instituto de Ingeniería, Universidad Autónoma de Baja California, Calle de la Normal s/n Col. Insurgentes Este, Mexicali 21280, Baja California, Mexico
    Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana, N° 3917, Fraccionamiento Playitas, Ensenada 22860, Baja California, Mexico)

  • Luis Walter Daesslé

    (Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana, N° 3917, Fraccionamiento Playitas, Ensenada 22860, Baja California, Mexico)

  • Rodrigo Méndez-Alonzo

    (Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada 22860, Baja California, Mexico)

  • Thomas Kretzschmar

    (Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada 22860, Baja California, Mexico)

Abstract

Evaluating how meteorological drought affects areas covered by natural ecosystems is challenging due to the lack of ground-based climate data, historical records, and weather station observation with limited coverage. This research tests how the surface reflectance–derived indices (SRDI) may solve this problem by assessing the condition and vegetation dynamics. We use long–term, monthly surface reflectance data (26 hydrological years, 1992/93–2017/18) from Landsat 5 TM, 7 ETM+, and 8 OLI/TIRS satellites and calculated the following five SRDI: Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), Vegetation Health Index (VHI), Normalized Difference Water Index (NDWI), and Modified Soil Adjusted Vegetation Index (MSAVI). The SRDI allows us to detect, classify, and quantify the area affected by drought in the Guadalupe Valley Basin (GVB) via correlations with the Reconnaissance Drought Index (RDI) and the Standardized Precipitation Index (SPI) (weather station-based data). For particular SRDI–RDI and SRDI–SPI combinations, we find positive seasonal correlations during April–May (IS2) and for annual (AN) values (MSAVI IS2–RDI AN, R = 0.90; NDWI IS2–SPI AN, R = 0.89; VHI AN–RDI AN, R = 0.86). The drought–affected GVB area accounted for >87% during 2001/02, 2006/07, 2013/14, and 2017/18. MSAVI and NDWI are the best meteorological drought indicators in this region, and their application minimizes the dependence on the availability of climatic data series.

Suggested Citation

  • Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:783-:d:824310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/783/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/783/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    2. Sanjay Jain & Ravish Keshri & Ajanta Goswami & Archana Sarkar, 2010. "Application of meteorological and vegetation indices for evaluation of drought impact: a case study for Rajasthan, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 643-656, September.
    3. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Fu & Mark Svoboda & Zhenghong Tang & Zhijun Dai & Jianjun Wu, 2013. "An overview of US state drought plans: crisis or risk management?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1607-1627, December.
    2. Anthony S. Kiem & Fiona Johnson & Seth Westra & Albert Dijk & Jason P. Evans & Alison O’Donnell & Alexandra Rouillard & Cameron Barr & Jonathan Tyler & Mark Thyer & Doerte Jakob & Fitsum Woldemeskel &, 2016. "Natural hazards in Australia: droughts," Climatic Change, Springer, vol. 139(1), pages 37-54, November.
    3. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    4. Yi Liu & Xiaoli Yang & Liliang Ren & Fei Yuan & Shanhu Jiang & Mingwei Ma, 2015. "A New Physically Based Self-Calibrating Palmer Drought Severity Index and its Performance Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4833-4847, October.
    5. Watinee Thavorntam & Netnapid Tantemsapya & Leisa Armstrong, 2015. "A combination of meteorological and satellite-based drought indices in a better drought assessment and forecasting in Northeast Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1453-1474, July.
    6. Jimmy Byakatonda & B. P. Parida & Ditiro B. Moalafhi & Piet K. Kenabatho & David Lesolle, 2020. "Investigating relationship between drought severity in Botswana and ENSO," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 255-278, January.
    7. Bright Chisadza & Onalenna Gwate & France Ncube & Nkululeko Mpofu, 2023. "Assessment and characterisation of hydrometeorological droughts in the Upper Mzingwane sub-catchment of Zimbabwe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3275-3299, April.
    8. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    9. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    10. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    11. L. Vergni & F. Todisco & B. Lena, 2021. "Evaluation of the similarity between drought indices by correlation analysis and Cohen's Kappa test in a Mediterranean area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2187-2209, September.
    12. Araceli Martin-Candilejo & Francisco J. Martin-Carrasco & Ana Iglesias & Luis Garrote, 2023. "Heading into the Unknown? Exploring Sustainable Drought Management in the Mediterranean Region," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    13. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    14. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    15. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    16. Hongli Wang & Yongxiang Zhang & Xuemei Shao, 2021. "A tree-ring-based drought reconstruction from 1466 to 2013 CE for the Aksu area, western China," Climatic Change, Springer, vol. 165(1), pages 1-16, March.
    17. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    18. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    19. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    20. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:783-:d:824310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.