IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4267-d255509.html
   My bibliography  Save this article

Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia

Author

Listed:
  • Mohd Khairul Idlan Muhammad

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia)

  • Mohamed Salem Nashwan

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
    Faculty of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Elhorria 2033, Cairo, Egypt)

  • Shamsuddin Shahid

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia)

  • Tarmizi bin Ismail

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia)

  • Young Hoon Song

    (Faculty of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea)

  • Eun-Sung Chung

    (Faculty of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea)

Abstract

Selection of appropriate empirical reference evapotranspiration (ET o ) estimation models is very important for the management of agriculture, water resources, and environment. Statistical metrics generally used for performance assessment of empirical ET o models, on a station level, often give contradictory results, which make the ranking of methods a challenging task. Besides, the ranking of ET o estimation methods for a given study area based on the rank at different stations is also a difficult task. Compromise programming and group decision-making methods have been proposed in this study for the ranking of 31 empirical ET o models for Peninsular Malaysia based on four standard statistical metrics. The result revealed the Penman-Monteith as the most suitable method of estimation of ET o , followed by radiation-based Priestley and Taylor and the mass transfer-based Dalton and Meyer methods. Among the temperature-based methods, Ivanov was found the best. The methodology suggested in this study can be adopted in any other region for an easy but robust evaluation of empirical ET o models.

Suggested Citation

  • Mohd Khairul Idlan Muhammad & Mohamed Salem Nashwan & Shamsuddin Shahid & Tarmizi bin Ismail & Young Hoon Song & Eun-Sung Chung, 2019. "Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4267-:d:255509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Sanusi Shiru & Shamsuddin Shahid & Noraliani Alias & Eun-Sung Chung, 2018. "Trend Analysis of Droughts during Crop Growing Seasons of Nigeria," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
    2. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    3. Rohwer, Carl, 1931. "Evaporation from Free Water Surfaces," Technical Bulletins 163103, United States Department of Agriculture, Economic Research Service.
    4. Morteza Mohsenipour & Shamsuddin Shahid & Eun-sung Chung & Xiao-jun Wang, 2018. "Changing Pattern of Droughts during Cropping Seasons of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1555-1568, March.
    5. Mohamed Salem Nashwan & Shamsuddin Shahid & Eun-Sung Chung & Kamal Ahmed & Young Hoon Song, 2018. "Development of Climate-Based Index for Hydrologic Hazard Susceptibility," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    6. Paweł Bogawski & Ewa Bednorz, 2014. "Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5021-5038, November.
    7. Sahar Hadi Pour & Ahmad Khairi Abd Wahab & Shamsuddin Shahid & Xiaojun Wang, 2019. "Spatial Pattern of the Unidirectional Trends in Thermal Bioclimatic Indicators in Iran," Sustainability, MDPI, vol. 11(8), pages 1-24, April.
    8. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    9. Aregai Tecle & Bijaya P. Shrestha & Lucien Duckstein, 1998. "A multiobjective decision support system for multiresource forest management," Group Decision and Negotiation, Springer, vol. 7(1), pages 23-40, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Rajab Houmsi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Kamal Ahmed & Ghaith Falah Ziarh & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim, 2019. "Spatial Shift of Aridity and Its Impact on Land Use of Syria," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    2. Milan Gocić & Mohammad Arab Amiri, 2021. "Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1913-1926, April.
    3. Vishwakarma, Dinesh Kumar & Pandey, Kusum & Kaur, Arshdeep & Kushwaha, N.L. & Kumar, Rohitashw & Ali, Rawshan & Elbeltagi, Ahmed & Kuriqi, Alban, 2022. "Methods to estimate evapotranspiration in humid and subtropical climate conditions," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Phon Sheng Hou & Lokman Mohd Fadzil & Selvakumar Manickam & Mahmood A. Al-Shareeda, 2023. "Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    5. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    2. Mohammad Ahsan Uddin & ASM Maksud Kamal & Shamsuddin Shahid & Eun-Sung Chung, 2020. "Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    3. Vishwakarma, Dinesh Kumar & Pandey, Kusum & Kaur, Arshdeep & Kushwaha, N.L. & Kumar, Rohitashw & Ali, Rawshan & Elbeltagi, Ahmed & Kuriqi, Alban, 2022. "Methods to estimate evapotranspiration in humid and subtropical climate conditions," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Mohammad Rajab Houmsi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Kamal Ahmed & Ghaith Falah Ziarh & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim, 2019. "Spatial Shift of Aridity and Its Impact on Land Use of Syria," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    5. Mahiuddin Alamgir & Morteza Mohsenipour & Rajab Homsi & Xiaojun Wang & Shamsuddin Shahid & Mohammed Sanusi Shiru & Nor Eliza Alias & Ali Yuzir, 2019. "Parametric Assessment of Seasonal Drought Risk to Crop Production in Bangladesh," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    6. Bui Phan Quoc Nghia & Indrajit Pal & Malay Pramanik & Rajarshi Dasgupta, 2022. "The impact of climate change on drought and its adaptation strategies: findings from general circulation models and households in Tien Giang Province, Vietnam," Climatic Change, Springer, vol. 175(3), pages 1-19, December.
    7. Mohammad Naser Sediqi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Rawshan Ali & Shadan Abubaker & Xiaojun Wang & Kamal Ahmed & Shamsuddin Shahid & Md. Asaduzzaman & Sayed Mir Agha Manawi, 2019. "Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    8. Sumaiya Jarin Ahammed & Rajab Homsi & Najeebullah Khan & Shamsuddin Shahid & Mohammed Sanusi Shiru & Morteza Mohsenipour & Kamal Ahmed & Nadeem Nawaz & Nor Eliza Alias & Ali Yuzir, 2020. "Assessment of changing pattern of crop water stress in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4619-4637, June.
    9. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    10. Mohammed Sanusi Shiru & Shamsuddin Shahid & Inhwan Park, 2021. "Projection of Water Availability and Sustainability in Nigeria Due to Climate Change," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    11. Jiaqi Sun & Xiaojun Wang & Yixing Yin & Shamsuddin Shahid, 2021. "Analysis of historical drought and flood characteristics of Hengshui during the period 1649–2018: a typical city in North China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2081-2099, September.
    12. Saleem A. Salman & Shamsuddin Shahid & Haitham Abdulmohsin Afan & Mohammed Sanusi Shiru & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2020. "Changes in Climatic Water Availability and Crop Water Demand for Iraq Region," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    13. Olufemi Sunday Durowoju & Temi Emmanuel Ologunorisa & Ademola Akinbobola, 2022. "Assessing agricultural and hydrological drought vulnerability in a savanna ecological zone of Sub-Saharan Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2431-2458, April.
    14. Young Hoon Song & Eun-Sung Chung & Mohammed Sanusi Shiru, 2020. "Uncertainty Analysis of Monthly Precipitation in GCMs Using Multiple Bias Correction Methods under Different RCPs," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    15. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    16. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    17. Guglielmo Zappalà, 2023. "Drought Exposure and Accuracy: Motivated Reasoning in Climate Change Beliefs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 649-672, August.
    18. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2021. "Observed meteorological drought trends in Bangladesh identified with the Effective Drought Index (EDI)," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Omolola M. Adisa & Muthoni Masinde & Joel O. Botai & Christina M. Botai, 2020. "Bibliometric Analysis of Methods and Tools for Drought Monitoring and Prediction in Africa," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    20. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4267-:d:255509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.