IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2075-d220741.html
   My bibliography  Save this article

Renewable Energy Perception by Rural Residents of a Peripheral EU Region

Author

Listed:
  • Ozgur Kaya

    (Department of Economics, School of Business Administration, American University of Sharjah, Sharjah, P.O. Box 26666, UAE)

  • Wojciech J. Florkowski

    (Department of Agricultural and Applied Economics, University of Georgia, Griffin, GA 30223-1797, USA)

  • Anna Us

    (Department of Agricultural and Applied Economics, Pope John Paul II State School of Higher Education, ul. Sidorska 95/97, 21-500 Biala Podlaska, Poland)

  • Anna M. Klepacka

    (Faculty of Production Engineering, Warsaw University of Life Sciences-SGGW, ul. Nowoursynowska 164, 02-787 Warsaw, Poland)

Abstract

Renewable energy (RE) sources are often locally available and have the potential to lessen the rural dependence on the national power grid, reducing disruptions in power supplies and the heavy dependence on coal combustion. Poland faces an EU mandate of a 15% share of renewables in energy generation by 2020. However, the installations intended to supply several types of RE encountered local opposition, forcing a cancellation of the planned investments and stressing a need for understanding rural residents’ attitudes towards RE in general. Using survey data, this paper examines the perception of RE importance among rural residents in eastern Poland. The specified empirical relationship includes the sociodemographic and economic characteristics of residents. Perceptions of the links between health and specific sources of environmental pollution and actions demonstrating energy-saving behavior serve as explanatory variables. The performance of the estimated logit equation was rigorously tested. The probability of attaching importance to RE by rural residents increases most if a respondent displayed an energy-saving behavior, has certain demographic characteristics, and links health to environmental pollution caused by coal combustion. The graphic depiction of the effects of selected variables succinctly communicates possible future programs aimed at strengthening the rural population support of RE.

Suggested Citation

  • Ozgur Kaya & Wojciech J. Florkowski & Anna Us & Anna M. Klepacka, 2019. "Renewable Energy Perception by Rural Residents of a Peripheral EU Region," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2075-:d:220741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ekins, Paul, 2004. "Step changes for decarbonising the energy system: research needs for renewables, energy efficiency and nuclear power," Energy Policy, Elsevier, vol. 32(17), pages 1891-1904, November.
    2. Bidwell, David, 2013. "The role of values in public beliefs and attitudes towards commercial wind energy," Energy Policy, Elsevier, vol. 58(C), pages 189-199.
    3. Giatrakos, Georgios P. & Tsoutsos, Theocharis D. & Zografakis, Nikos, 2009. "Sustainable power planning for the island of Crete," Energy Policy, Elsevier, vol. 37(4), pages 1222-1238, April.
    4. Bergmann, Ariel & Colombo, Sergio & Hanley, Nick, 2008. "Rural versus urban preferences for renewable energy developments," Ecological Economics, Elsevier, vol. 65(3), pages 616-625, April.
    5. J. Scott Long & Jeremy Freese, 2006. "Regression Models for Categorical Dependent Variables using Stata, 2nd Edition," Stata Press books, StataCorp LP, edition 2, number long2, March.
    6. Gabriela Miranda & Hyoung-Woo Chung & David Gibbs & Richard Howard & Lisa Rustico, 2011. "Climate Change, Employment and Local Development in Extremadura, Spain," OECD Local Economic and Employment Development (LEED) Papers 2011/4, OECD Publishing.
    7. Grubb,Michael & Jamasb,Tooraj & Pollitt,Michael G. (ed.), 2008. "Delivering a Low Carbon Electricity System," Cambridge Books, Cambridge University Press, number 9780521888844.
    8. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    9. J Richard Eiser & Katarzyna Aluchna & Christopher R Jones, 2010. "Local Wind or Russian Gas? Contextual Influences on Polish Attitudes to Wind Energy Developments," Environment and Planning C, , vol. 28(4), pages 595-608, August.
    10. Ferreira, Susana & Akay, Alpaslan & Brereton, Finbarr & Cuñado, Juncal & Martinsson, Peter & Moro, Mirko & Ningal, Tine F., 2013. "Life satisfaction and air quality in Europe," Ecological Economics, Elsevier, vol. 88(C), pages 1-10.
    11. Borges Neto, M.R. & Carvalho, P.C.M. & Carioca, J.O.B. & Canafístula, F.J.F., 2010. "Biogas/photovoltaic hybrid power system for decentralized energy supply of rural areas," Energy Policy, Elsevier, vol. 38(8), pages 4497-4506, August.
    12. Gabriela Miranda & Randall W. Eberts & Elvira González & Vanessa Foo & Przemyslaw Kulawczuk, 2011. "Climate Change, Employment and Local Development in Poland," OECD Local Economic and Employment Development (LEED) Papers 2011/22, OECD Publishing.
    13. Gabriela Miranda & Paul Dalziel & Cecilia Estolano & Kris Krasnowski & Graham Larcombe, 2011. "Climate Change, Employment and Local Development, Sydney, Australia," OECD Local Economic and Employment Development (LEED) Papers 2011/14, OECD Publishing.
    14. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    15. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    16. Tjur, Tue, 2009. "Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination," The American Statistician, American Statistical Association, vol. 63(4), pages 366-372.
    17. Gabriela Miranda & Mads Greaker & Kris Krasnowski & Bettina Schaefer & Andy Westwood, 2011. "Climate Change, Employment and Local Development in London, UK," OECD Local Economic and Employment Development (LEED) Papers 2011/5, OECD Publishing.
    18. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shujie Zhao & Qingbin Song & Chao Wang, 2019. "Characterizing the Energy-Saving Behaviors, Attitudes and Awareness of University Students in Macau," Sustainability, MDPI, vol. 11(22), pages 1-11, November.
    2. Alexander Titov & György Kövér & Katalin Tóth & Géza Gelencsér & Bernadett Horváthné Kovács, 2021. "Acceptance and Potential of Renewable Energy Sources Based on Biomass in Rural Areas of Hungary," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    3. Alettin Irmak & Nurlan Kurmanov & Onaikhan Zhadigerova & Zukhra Turdiyeva & Aigul Bakirbekova & Gaukhar Saimagambetova & Assilbek Baidakov & Aigul Mukhamejanova & Madina Tolysbayeva & Sagyngali Seitzh, 2023. "Shaping Energy-Saving Behavior in Education System: A Systematic Review," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 46-60, July.
    4. Jolanta Latosińska & Dorota Miłek, 2023. "The State of Knowledge and Attitudes of the Inhabitants of the Polish Świętokrzyskie Province about Renewable Energy Sources," Energies, MDPI, vol. 16(21), pages 1-21, November.
    5. Piyapong Janmaimool & Jaruwan Chontanawat, 2021. "Do University Students Base Decisions to Engage in Sustainable Energy Behaviors on Affective or Cognitive Attitudes?," Sustainability, MDPI, vol. 13(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    2. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Socioeconomic and demographic factors that influence publics' awareness on the different forms of renewable energy sources," Renewable Energy, Elsevier, vol. 71(C), pages 480-485.
    3. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    4. Caporale, Diana & De Lucia, Caterina, 2015. "Social acceptance of on-shore wind energy in Apulia Region (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1378-1390.
    5. Bertsch, Valentin & Hyland, Marie & Mahony, Michael, 2017. "What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland," Energy Policy, Elsevier, vol. 106(C), pages 472-497.
    6. Yushi Kunugi & Toshi H. Arimura & Miwa Nakai, 2021. "The Long-Term Impact of Wind Power Generation on a Local Community: Economics Analysis of Subjective Well-Being Data in Chōshi City," Energies, MDPI, vol. 14(13), pages 1-18, July.
    7. Sonnberger, Marco & Ruddat, Michael, 2017. "Local and socio-political acceptance of wind farms in Germany," Technology in Society, Elsevier, vol. 51(C), pages 56-65.
    8. Aaen, Sara Bjørn & Kerndrup, Søren & Lyhne, Ivar, 2016. "Beyond public acceptance of energy infrastructure: How citizens make sense and form reactions by enacting networks of entities in infrastructure development," Energy Policy, Elsevier, vol. 96(C), pages 576-586.
    9. Christian M Rogerson, 2016. "Climate change, tourism and local economic development in South Africa," Local Economy, London South Bank University, vol. 31(1-2), pages 322-331, February.
    10. Jason Harold, Valentin Bertsch, Thomas Lawrence, and Magie Hall, 2021. "Drivers of People's Preferences for Spatial Proximity to Energy Infrastructure Technologies: A Cross-country Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    11. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    12. Hyland, Marie & Bertsch, Valentin, 2018. "The Role of Community Involvement Mechanisms in Reducing Resistance to Energy Infrastructure Development," Ecological Economics, Elsevier, vol. 146(C), pages 447-474.
    13. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    14. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    15. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    16. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    17. Johanna Pfeiffer & Andreas Gabriel & Markus Gandorfer, 2021. "Understanding the public attitudinal acceptance of digital farming technologies: a nationwide survey in Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(1), pages 107-128, February.
    18. Okkonen, Lasse & Lehtonen, Olli, 2016. "Socio-economic impacts of community wind power projects in Northern Scotland," Renewable Energy, Elsevier, vol. 85(C), pages 826-833.
    19. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    20. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2075-:d:220741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.