IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1242-d209297.html
   My bibliography  Save this article

Spatial Distribution of Global Cultivated Land and Its Variation between 2000 and 2010, from Both Agro-Ecological and Geopolitical Perspectives

Author

Listed:
  • Min Cao

    (School of Geography, Nanjing Normal University, Nanjing 210023, China
    State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing Normal University, Nanjing 210023, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China)

  • Yanhui Zhu

    (School of Geography, Nanjing Normal University, Nanjing 210023, China
    State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing Normal University, Nanjing 210023, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China)

  • Guonian Lü

    (School of Geography, Nanjing Normal University, Nanjing 210023, China
    State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing Normal University, Nanjing 210023, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China)

  • Min Chen

    (School of Geography, Nanjing Normal University, Nanjing 210023, China
    State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing Normal University, Nanjing 210023, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China)

  • Weifeng Qiao

    (School of Geography, Nanjing Normal University, Nanjing 210023, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China)

Abstract

Food security requires a thorough understanding of the spatial characteristics of cultivated land changes on a global scale. In particular, the spatial heterogeneity of global cultivated land changes needs to be evaluated with high spatial resolution data. This study aims to analyse the spatial distribution of global cultivated land and the characteristics of its variation, by using GlobeLand30 data for 2000 and 2010 with a 30-m spatial resolution. The cultivated land percentage and rate of cultivated land use change are calculated based on 18 agro-ecological zones (AEZs), 32 geopolitical and socioeconomic regions, and 283 world regions. The results show that (1) more cultivated land is located in regions under a temperate climate and moderate moisture conditions; (2) the percentage of cultivated land is related to the gross domestic product (GDP) and population, while increases and decreases in cultivated land are related to the rural population, policy encouragement, urbanization, and economic development; and (3) the percentage of cultivated land and rate of land use change within an AEZ vary greatly due to the different socioeconomic conditions, and the values within a geopolitical area also vary, due to different natural conditions.

Suggested Citation

  • Min Cao & Yanhui Zhu & Guonian Lü & Min Chen & Weifeng Qiao, 2019. "Spatial Distribution of Global Cultivated Land and Its Variation between 2000 and 2010, from Both Agro-Ecological and Geopolitical Perspectives," Sustainability, MDPI, vol. 11(5), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1242-:d:209297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omaid Najmuddin & Xiangzheng Deng & Ruchira Bhattacharya, 2018. "The Dynamics of Land Use/Cover and the Statistical Assessment of Cropland Change Drivers in the Kabul River Basin, Afghanistan," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    2. Son H. Kim, Jae Edmonds, Josh Lurz, Steven J. Smith, and Marshall Wise, 2006. "The objECTS Framework for integrated Assessment: Hybrid Modeling of Transportation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 63-92.
    3. Ren, Jie & Campbell, James B. & Shao, Yang, 2016. "Spatial and temporal dimensions of agricultural land use changes, 2001–2012, East-Central Iowa," Agricultural Systems, Elsevier, vol. 148(C), pages 149-158.
    4. Bruno M. Meneses & Eusébio Reis & Susana Pereira & Maria J. Vale & Rui Reis, 2017. "Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal," Sustainability, MDPI, vol. 9(3), pages 1-20, February.
    5. Armando Avalos Jiménez & Fernando Flores Vilchez & Oyolsi Nájera González & Susana M. L. Marceleño Flores, 2018. "Analysis of the Land Use and Cover Changes in the Metropolitan Area of Tepic-Xalisco (1973–2015) through Landsat Images," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    6. Hualin Xie & Yanwei Zhang & Yongrok Choi, 2018. "Measuring the Cultivated Land Use Efficiency of the Main Grain-Producing Areas in China under the Constraints of Carbon Emissions and Agricultural Nonpoint Source Pollution," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Chu & Chong Huang & Qingsheng Liu & Chongfa Cai & Gaohuan Liu, 2019. "Spatial Heterogeneity of Winter Wheat Yield and Its Determinants in the Yellow River Delta, China," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    2. Rui Zhao & Kening Wu & Xiaoliang Li & Nan Gao & Mingming Yu, 2021. "Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    3. Chunxiao Zhang & Xinqi Zheng & Jiayang Li & Shuxian Wang & Weiming Xu, 2019. "Research in Meteorological Modeling Oriented Comprehensive Surface Complexity (CSC)," Sustainability, MDPI, vol. 11(15), pages 1-13, July.
    4. Zhiyin Wang & Jiansheng Cao, 2021. "Assessing and Predicting the Impact of Multi-Scenario Land Use Changes on the Ecosystem Service Value: A Case Study in the Upstream of Xiong’an New Area, China," Sustainability, MDPI, vol. 13(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Xiang & Huan Yu & Xiaoyu Xu & Hong Huang, 2022. "Temporal and Spatial Differentiation of Cultivated Land and Its Response to Climatic Factors in Complex Geomorphic Areas—A Case Study of Sichuan Province of China," Land, MDPI, vol. 11(2), pages 1-18, February.
    2. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    3. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    4. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    5. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    6. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    7. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    8. Xiaowei Yao & Ting Luo & Yingjun Xu & Wanxu Chen & Jie Zeng, 2022. "Prediction of Spatiotemporal Changes in Sloping Cropland in the Middle Reaches of the Yangtze River Region under Different Scenarios," IJERPH, MDPI, vol. 20(1), pages 1-22, December.
    9. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.
    10. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    11. Minyoung Roh & Seungho Jeon & Soontae Kim & Sha Yu & Almas Heshmati & Suduk Kim, 2020. "Modeling Air Pollutant Emissions in the Provincial Level Road Transportation Sector in Korea: A Case Study of the Zero-Emission Vehicle Subsidy," Energies, MDPI, vol. 13(15), pages 1-22, August.
    12. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.
    13. Biarnès, Anne & Bailly, Jean-Stéphane & Mekki, Insaf & Ferchichi, Intissar, 2021. "Land use mosaics in Mediterranean rainfed agricultural areas as an indicator of collective crop successions: Insights from a land use time series study conducted in Cap Bon, Tunisia," Agricultural Systems, Elsevier, vol. 194(C).
    14. Justyna Wójcik-Leń & Przemysław Leń, 2021. "Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas," Land, MDPI, vol. 10(7), pages 1-13, June.
    15. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    16. Erin Baker & Olaitan Olaleye & Lara Aleluia Reis, 2015. "Decision Frameworks and the Investment in R&D," Working Papers 2015.42, Fondazione Eni Enrico Mattei.
    17. Bin Fan & Mingyang Li, 2022. "The Effect of Heterogeneous Environmental Regulations on Carbon Emission Efficiency of the Grain Production Industry: Evidence from China’s Inter-Provincial Panel Data," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    18. Seungho Jeon & Minyoung Roh & Almas Heshmati & Suduk Kim, 2020. "An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea," Energies, MDPI, vol. 13(17), pages 1-13, September.
    19. Turnbull, D. & Glaser, A. & Goldston, R.J., 2015. "Investigating the value of fusion energy using the Global Change Assessment Model," Energy Economics, Elsevier, vol. 51(C), pages 346-353.
    20. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1242-:d:209297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.