IDEAS home Printed from https://ideas.repec.org/a/bla/growch/v53y2022i3p1122-1145.html
   My bibliography  Save this article

Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China

Author

Listed:
  • Weijia Chen
  • Yongquan Lu
  • Guilin Liu

Abstract

In arid zones, ecological barriers can affect the agricultural development and sustainable development of oases. Therefore, balancing cropland and desert vegetation is the key to realizing ecological and rural revitalization. Then, we proposed a theoretical framework from the perspective of rural revitalization to analyze the key drivers that affect the balance of cropland and desert vegetation during 1990–2020. The results showed that cropland area in Xinjiang decreased by 881 km2 during 1990–1995, while it continually increased by 34,086 km2 during 1995–2020. However, grassland and woodland increased by 8,086 km2 during 2015–2020, indicating that the balance between cropland gain and desert vegetation loss began to improve. Most cropland expansions were reclaimed from woodland/grassland and unused land. During 1990–2005, changes between cropland and unused land in Xinjiang were mainly affected by gross domestic product (GDP). GDP and population most significantly affected the conversion (17,939 km2) of woodland/grassland to cropland during 1995–2015. Although population and economic growth led to an increase in cropland, the implementation of simultaneous and consistent policies on ecological conservation offset the reduction in desert vegetation. The findings can provide suggestions for smart cropland management and rural revitalization in Xinjiang, Central Asian countries and other countries with similar backgrounds worldwide.

Suggested Citation

  • Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
  • Handle: RePEc:bla:growch:v:53:y:2022:i:3:p:1122-1145
    DOI: 10.1111/grow.12568
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/grow.12568
    Download Restriction: no

    File URL: https://libkey.io/10.1111/grow.12568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Han Huang & Yang Zhou & Mingjie Qian & Zhaoqi Zeng, 2021. "Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu County, Shanxi Province," Land, MDPI, vol. 10(1), pages 1-15, January.
    2. Zongfeng Chen & Xueqi Liu & Zhi Lu & Yurui Li, 2021. "The Expansion Mechanism of Rural Residential Land and Implications for Sustainable Regional Development: Evidence from the Baota District in China’s Loess Plateau," Land, MDPI, vol. 10(2), pages 1-16, February.
    3. Wu, X.D. & Guo, J.L. & Han, M.Y. & Chen, G.Q., 2018. "An overview of arable land use for the world economy: From source to sink via the global supply chain," Land Use Policy, Elsevier, vol. 76(C), pages 201-214.
    4. Liu, Yansui, 2018. "Introduction to land use and rural sustainability in China," Land Use Policy, Elsevier, vol. 74(C), pages 1-4.
    5. Omaid Najmuddin & Xiangzheng Deng & Ruchira Bhattacharya, 2018. "The Dynamics of Land Use/Cover and the Statistical Assessment of Cropland Change Drivers in the Kabul River Basin, Afghanistan," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    6. Zhou, Yang & Li, Yamei & Xu, Chenchen, 2020. "Land consolidation and rural revitalization in China: Mechanisms and paths," Land Use Policy, Elsevier, vol. 91(C).
    7. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Author Correction: Global land change from 1982 to 2016," Nature, Nature, vol. 563(7732), pages 26-26, November.
    8. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2020. "Land use change and driving factors in rural China during the period 1995-2015," Land Use Policy, Elsevier, vol. 99(C).
    9. Qun Liu & Zhaoping Yang & Cuirong Wang & Fang Han, 2019. "Temporal-Spatial Variations and Influencing Factor of Land Use Change in Xinjiang, Central Asia, from 1995 to 2015," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    10. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    11. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    12. Ayisulitan Maimaitiaili & Xiaokaiti Aji & Akbar Matniyaz & Akihiko Kondoh, 2018. "Monitoring and Analysing Land Use/Cover Changes in an Arid Region Based on Multi-Satellite Data: The Kashgar Region, Northwest China," Land, MDPI, vol. 7(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yang & Zhong, Zhen & Cheng, Guoqiang, 2023. "Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019," Land Use Policy, Elsevier, vol. 125(C).
    2. Xue Zhou & Yang Zhou, 2021. "Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China," Land, MDPI, vol. 10(9), pages 1-17, September.
    3. Liu, Jingming & Chen, Haibin & Hou, Xianhui & Zhang, Daojun & Zhang, Hui, 2021. "Time to adopt a context-specific and market-based compensation scheme for a new round of the Grain for Green Program," Land Use Policy, Elsevier, vol. 108(C).
    4. Juan Li & Xunzhou Chunyu & Feng Huang, 2022. "Land Use Pattern Changes and the Driving Forces in the Shiyang River Basin from 2000 to 2018," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    5. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    6. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    7. Zhao, Na & Chen, Kainan & Wu, Xiaoran & Zhang, Lili & Wang, Wei, 2024. "Cropland fragmentation change across China over the last two decades," Agricultural Systems, Elsevier, vol. 218(C).
    8. Wei, Wei & Wang, Ning & Yin, Li & Guo, Shiyi & Bo, Liming, 2024. "Spatio-temporal evolution characteristics and driving mechanisms of Urban–Agricultural–Ecological space in ecologically fragile areas: A case study of the upper reaches of the Yangtze River Economic B," Land Use Policy, Elsevier, vol. 145(C).
    9. Senkai Xie & Wenjia Zhang & Yi Zhao & De Tong, 2022. "Extracting Land Use Change Patterns of Rural Town Settlements with Sequence Alignment Method," Land, MDPI, vol. 11(2), pages 1-17, February.
    10. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2021. "Cultivated land protection and rational use in China," Land Use Policy, Elsevier, vol. 106(C).
    11. Li, Xunhuan & Wang, Yongsheng & Wang, Zhaosheng, 2024. "Quantifying the industrial development modes and their capability of realizing the ecological value in rural China," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    12. Peng Cheng & Yiyu Qin & Siyang Zhu & Xuesong Kong, 2022. "Ecological Disturbance of Rural Settlement Expansion: Evidence from Nantong, Eastern China," Land, MDPI, vol. 11(10), pages 1-16, October.
    13. Xinyan Wu & Jinmei Ding & Bingjie Lu & Yuanyuan Wan & Linna Shi & Qi Wen, 2022. "Eco-Environmental Effects of Changes in Territorial Spatial Pattern and Their Driving Forces in Qinghai, China (1980–2020)," Land, MDPI, vol. 11(10), pages 1-20, October.
    14. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    15. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    16. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    17. Wei Fan & Xiankun Yang & Shirong Cai & Haidong Ou & Tao Zhou & Dakang Wang, 2024. "Land-Use/Cover Change and Driving Forces in the Pan-Pearl River Basin during the Period 1985–2020," Land, MDPI, vol. 13(6), pages 1-26, June.
    18. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    19. Jing Duan & Pu Shi & Yuanyuan Yang & Dongyan Wang, 2024. "Spatiotemporal Change Analysis and Multi-Scenario Modeling of Ecosystem Service Values: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration, China," Land, MDPI, vol. 13(11), pages 1-21, October.
    20. Tatiana Montenegro-Romero & Cristián Vergara-Fernández & Fabian Argandoña-Castro & Fernando Peña-Cortés, 2022. "Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile," Land, MDPI, vol. 11(6), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:growch:v:53:y:2022:i:3:p:1122-1145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0017-4815 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.