IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i2p271-d746476.html
   My bibliography  Save this article

Temporal and Spatial Differentiation of Cultivated Land and Its Response to Climatic Factors in Complex Geomorphic Areas—A Case Study of Sichuan Province of China

Author

Listed:
  • Qing Xiang

    (College of Earth Science, Chengdu University of Technology, Chengdu 610059, China)

  • Huan Yu

    (College of Earth Science, Chengdu University of Technology, Chengdu 610059, China)

  • Xiaoyu Xu

    (Department of Geography and Environmental Resources & Environmental Resources and Policy, Southern Illinois University Carbondale, Carbondale, IL 62901, USA)

  • Hong Huang

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

Abstract

Analyzing the distribution characteristics and influencing factors of cultivated land in complex geomorphic areas is significant in evaluating the agricultural farming environment and formulating cultivated land protection measures. This study extracted cultivated land information based on multi-source remote sensing data, and analyzed the geomorphic differentiation of cultivated land distribution and climate response from 2000 to 2020 using the Gini coefficient, spatial autocorrelation analysis and geographic detector. The results show that cultivated land is mainly distributed in low-altitude hills and low-altitude small undulating mountains, and secondarily in low-altitude alluvial and proluvial plains and platforms. Moreover, from 2000 to 2020, the cultivated land in the high-altitude and high-altitude undulating mountains and medium and high-altitude undulating mountains in the Northwest Plateau of Sichuan showed an upward trend, while the cultivated land in the Sichuan Basin mainly increased from the north and south to the middle of the basin. In addition, the highest temperature has the strongest ability to explain the spatial heterogeneity of cultivated land. From the calculation results of the influence coefficient of a single climatic factor and the combined effect of multiple climatic factors, the main factors that affect the distribution of cultivated land are different in different geomorphological regions. Finally, it is proposed to formulate a long-term strategy for agricultural production to adapt to climate change in complex geomorphic areas in order to reduce the negative impact of environmental change on agricultural production.

Suggested Citation

  • Qing Xiang & Huan Yu & Xiaoyu Xu & Hong Huang, 2022. "Temporal and Spatial Differentiation of Cultivated Land and Its Response to Climatic Factors in Complex Geomorphic Areas—A Case Study of Sichuan Province of China," Land, MDPI, vol. 11(2), pages 1-18, February.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:271-:d:746476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/2/271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/2/271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omaid Najmuddin & Xiangzheng Deng & Ruchira Bhattacharya, 2018. "The Dynamics of Land Use/Cover and the Statistical Assessment of Cropland Change Drivers in the Kabul River Basin, Afghanistan," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    2. Ren, Jie & Campbell, James B. & Shao, Yang, 2016. "Spatial and temporal dimensions of agricultural land use changes, 2001–2012, East-Central Iowa," Agricultural Systems, Elsevier, vol. 148(C), pages 149-158.
    3. Bruno M. Meneses & Eusébio Reis & Susana Pereira & Maria J. Vale & Rui Reis, 2017. "Understanding Driving Forces and Implications Associated with the Land Use and Land Cover Changes in Portugal," Sustainability, MDPI, vol. 9(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He Liu & Xueming Li, 2022. "Understanding the Driving Factors for Urban Human Settlement Vitality at Street Level: A Case Study of Dalian, China," Land, MDPI, vol. 11(5), pages 1-20, April.
    2. Tao Liang & Weilin Tao & Yan Wang & Na Zhou & Wei Hu & Tao Zhang & Dunxiu Liao & Xinping Chen & Xiaozhong Wang, 2023. "The Extension of Vegetable Production to High Altitudes Increases the Environmental Cost and Decreases Economic Benefits in Subtropical Regions," Land, MDPI, vol. 12(3), pages 1-15, March.
    3. Xiaofu Lin & Hui Fu, 2022. "Spatial-Temporal Evolution and Driving Forces of Cultivated Land Based on the PLUS Model: A Case Study of Haikou City, 1980–2020," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    4. Yiming Sang & Liangjie Xin, 2023. "Factors Determining Concurrent Reclamation and Abandonment of Cultivated Land on the Qinghai-Tibet Plateau," Land, MDPI, vol. 12(5), pages 1-17, May.
    5. Guanglian Luo & Bin Wang & Ruiwei Li & Dongqi Luo & Chaofu Wei, 2022. "Study of the Agglomeration Characteristics of Cultivated Land in Underdeveloped Mountainous Areas Based on Spatial Auto-Correlation: A Case of Pengshui County, Chongqing, China," Land, MDPI, vol. 11(6), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Cao & Yanhui Zhu & Guonian Lü & Min Chen & Weifeng Qiao, 2019. "Spatial Distribution of Global Cultivated Land and Its Variation between 2000 and 2010, from Both Agro-Ecological and Geopolitical Perspectives," Sustainability, MDPI, vol. 11(5), pages 1-16, February.
    2. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    3. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    4. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.
    5. Biarnès, Anne & Bailly, Jean-Stéphane & Mekki, Insaf & Ferchichi, Intissar, 2021. "Land use mosaics in Mediterranean rainfed agricultural areas as an indicator of collective crop successions: Insights from a land use time series study conducted in Cap Bon, Tunisia," Agricultural Systems, Elsevier, vol. 194(C).
    6. Justyna Wójcik-Leń & Przemysław Leń, 2021. "Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas," Land, MDPI, vol. 10(7), pages 1-13, June.
    7. José Leandro Barros & Alexandre Oliveira Tavares & Mário Monteiro & Pedro Pinto Santos, 2018. "Peri-Urbanization and Rurbanization in Leiria City: the Importance of a Planning Framework," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    8. Jingwei Xiang & Xiaoqing Song & Jiangfeng Li, 2019. "Cropland Use Transitions and Their Driving Factors in Poverty-Stricken Counties of Western Hubei Province, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    9. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    10. Tao Yu & Anming Bao & Wenqiang Xu & Hao Guo & Liangliang Jiang & Guoxiong Zheng & Ye Yuan & Vincent NZABARINDA, 2019. "Exploring Variability in Landscape Ecological Risk and Quantifying Its Driving Factors in the Amu Darya Delta," IJERPH, MDPI, vol. 17(1), pages 1-21, December.
    11. Omaid Najmuddin & Xiangzheng Deng & Ruchira Bhattacharya, 2018. "The Dynamics of Land Use/Cover and the Statistical Assessment of Cropland Change Drivers in the Kabul River Basin, Afghanistan," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    12. Qiang Li & Yuchi Pu & Yang Zhang, 2022. "Study on the Spatio-Temporal Evolution of Land Use in Resource-Based Cities in Three Northeastern Provinces of China—An Analysis Based on Long-Term Series," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    13. Bo Wen & Yunhua Pan & Yanyuan Zhang & Jingjie Liu & Min Xia, 2018. "Does the Exhaustion of Resources Drive Land Use Changes? Evidence from the Influence of Coal Resources-Exhaustion on Coal Resources–Based Industry Land Use Changes," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    14. Kurowska, Krystyna & Kryszk, Hubert & Marks-Bielska, Renata & Mika, Monika & Leń, Przemysław, 2020. "Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience," Land Use Policy, Elsevier, vol. 95(C).
    15. André Alves & Filipe Marcelino & Eduardo Gomes & Jorge Rocha & Mário Caetano, 2022. "Spatiotemporal Land-Use Dynamics in Continental Portugal 1995–2018," Sustainability, MDPI, vol. 14(23), pages 1-29, November.
    16. David Fernández-Nogueira & Eduardo Corbelle-Rico, 2019. "Determinants of Land Use/Cover Change in the Iberian Peninsula (1990–2012) at Municipal Level," Land, MDPI, vol. 9(1), pages 1-12, December.
    17. Anna Roccati & Fabio Luino & Laura Turconi & Pietro Piana & Charles Watkins & Francesco Faccini, 2018. "Historical Geomorphological Research of a Ligurian Coastal Floodplain (Italy) and Its Value for Management of Flood Risk and Environmental Sustainability," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    18. Maggie G. Munthali & Nerhene Davis & Abiodun M. Adeola & Joel O. Botai & Jonathan M. Kamwi & Harold L. W. Chisale & Oluwagbenga O. I. Orimoogunje, 2019. "Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region," Sustainability, MDPI, vol. 11(3), pages 1-25, February.
    19. Wenhai Xie & Wanfu Jin & Kairui Chen & Jilin Wu & Chunshan Zhou, 2019. "Land Use Transition and Its Influencing Factors in Poverty-Stricken Mountainous Areas of Sangzhi County, China," Sustainability, MDPI, vol. 11(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:2:p:271-:d:746476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.