IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7092-d296629.html
   My bibliography  Save this article

Sustainable Personal Transport Modes in a Life Cycle Perspective—Public or Private?

Author

Listed:
  • Rajib Sinha

    (Department of Sustainable Development, Environmental Science and Engineering (SEED), School of Architecture and the Built Environment, KTH Royal Institute of Technology Stockholm, Teknikringen 10B, 100 44 Stockholm, Sweden)

  • Lars E. Olsson

    (CTF Service Research Center and Department of Social and Psychological Studies, Karlstad University, SE-65188 Karlstad, Sweden)

  • Björn Frostell

    (Ecoloop AB, 116 46 Stockholm, Sweden)

Abstract

Life cycle-based studies endorse public transport to cause lower environmental pressures compared to a private car. However, a private car can cause lower environmental pressure when a public vehicle (bus or train) runs on a lower occupancy during an off-peak hour. This fact should be the basis for a more profound debate regarding public versus private transport. Many transport interventions are striving to reduce the number of car transports. To reach this goal, passengers need attractive alternatives to their reduced number of car travels (i.e., attractive public transport). This study aimed to develop a model allowing us to estimate potential environmental gains by changing travel behavior. A passenger travel model was developed based on life cycle inventories (LCI) of different travel modes to calculate environmental footprints. The model was applied in an intervention of public transport through temporary free public transport. The intervention was successful in significantly reducing the number of car transports (12%). However, total passenger kilometer travelled (PKT) increased substantially more, mainly by bus, but also train, bicycle and walking. The total energy, carbon and nitrogen oxide footprints were slightly increased after the intervention. If the commuters were assumed to travel during peak hours or the number of public transports were not affected by the increased number of commuters, the overall environmental footprints decreased. Our conclusions are that transport interventions are very complex. They may result in desired changes, but also in altered travel behavior, increasing overall impact. Thus, a very broad evaluation of all transport modes as well as potential positive social influences of the transport intervention will be necessary.

Suggested Citation

  • Rajib Sinha & Lars E. Olsson & Björn Frostell, 2019. "Sustainable Personal Transport Modes in a Life Cycle Perspective—Public or Private?," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7092-:d:296629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eliasson, Jonas & Proost, Stef, 2015. "Is sustainable transport policy sustainable?," Transport Policy, Elsevier, vol. 37(C), pages 92-100.
    2. Mokhtarian, Patricia L. & Salomon, Ilan, 2001. "How derived is the demand for travel? Some conceptual and measurement considerations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 695-719, September.
    3. Oded Cats & Yusak O. Susilo & Triin Reimal, 2017. "The prospects of fare-free public transport: evidence from Tallinn," Transportation, Springer, vol. 44(5), pages 1083-1104, September.
    4. Katrin Lättman & Margareta Friman & Lars E. Olsson, 2016. "Perceived Accessibility of Public Transport as a Potential Indicator of Social Inclusion," Social Inclusion, Cogitatio Press, vol. 4(3), pages 36-45.
    5. Sebastian Bamberg & Peter Schmidt, 1998. "Changing Travel-Mode Choice As Rational Choice:," Rationality and Society, , vol. 10(2), pages 223-252, May.
    6. Chester, Mikhail V, 2008. "Life-cycle Environmental Inventory of Passenger Transportation in the United States," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7n29n303, Institute of Transportation Studies, UC Berkeley.
    7. Skippon, Stephen & Veeraraghavan, Shoba & Ma, Hongrui & Gadd, Paul & Tait, Nigel, 2012. "Combining technology development and behaviour change to meet CO2 cumulative emission budgets for road transport: Case studies for the USA and Europe," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1405-1423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    2. Yunqiang Xue & Lin Cheng & Kuang Wang & Jing An & Hongzhi Guan, 2020. "System Dynamics Analysis of the Relationship between Transit Metropolis Construction and Sustainable Development of Urban Transportation—Case Study of Nanchang City, China," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    3. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Pathways to achieve future CO2 emission reduction targets for bus transit networks," Energy, Elsevier, vol. 244(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urbanek, Anna, 2021. "Potential of modal shift from private cars to public transport: A survey on the commuters’ attitudes and willingness to switch – A case study of Silesia Province, Poland," Research in Transportation Economics, Elsevier, vol. 85(C).
    2. Schneider, Robert J., 2013. "Theory of routine mode choice decisions: An operational framework to increase sustainable transportation," Transport Policy, Elsevier, vol. 25(C), pages 128-137.
    3. Bartosz Bursa & Markus Mailer & Kay W. Axhausen, 2022. "Intra-destination travel behavior of alpine tourists: a literature review on choice determinants and the survey work," Transportation, Springer, vol. 49(5), pages 1465-1516, October.
    4. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, David & Sengupta, Raja & Walker, Joan L., 2012. "The Quantified Traveler: Changing transport behavior with personalized travel data feedback," University of California Transportation Center, Working Papers qt3047k0dw, University of California Transportation Center.
    5. Lovejoy, Kristin, 2012. "Mobility Fulfillment Among Low-car Households: Implications for Reducing Auto Dependence in the United States," Institute of Transportation Studies, Working Paper Series qt4v44b5qn, Institute of Transportation Studies, UC Davis.
    6. Le, Huyen T.K. & Buehler, Ralph & Fan, Yingling & Hankey, Steve, 2020. "Expanding the positive utility of travel through weeklong tracking: Within-person and multi-environment variability of ideal travel time," Journal of Transport Geography, Elsevier, vol. 84(C).
    7. Guimarães, Vanessa de Almeida & Leal Junior, Ilton Curty & da Silva, Marcelino Aurélio Vieira, 2018. "Evaluating the sustainability of urban passenger transportation by Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 732-752.
    8. Edmond Daramy-Williams & Jillian Anable & Susan Grant-Muller, 2019. "Car Use: Intentional, Habitual, or Both? Insights from Anscombe and the Mobility Biography Literature," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    9. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    10. Cornelis Dirk van Goeverden, 2021. "The value of travel speed," Papers 2106.06599, arXiv.org.
    11. van Wee, Bert & Bohte, Wendy & Molin, Eric & Arentze, Theo & Liao, Feixiong, 2014. "Policies for synchronization in the transport–land-use system," Transport Policy, Elsevier, vol. 31(C), pages 1-9.
    12. Barbora Mazúrová & Ján Kollár & Gabriela Nedelová, 2021. "Travel Mode of Commuting in Context of Subjective Well-Being—Experience from Slovakia," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    13. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    14. Peter Bäckström & Erika Sandow & Olle Westerlund, 2016. "Commuting and timing of retirement," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 125-152, January.
    15. Lois, David & López-Sáez, Mercedes, 2009. "The relationship between instrumental, symbolic and affective factors as predictors of car use: A structural equation modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(9-10), pages 790-799, November.
    16. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    17. Konstantinos Koasidis & Anastasios Karamaneas & Alexandros Nikas & Hera Neofytou & Erlend A. T. Hermansen & Kathleen Vaillancourt & Haris Doukas, 2020. "Many Miles to Paris: A Sectoral Innovation System Analysis of the Transport Sector in Norway and Canada in Light of the Paris Agreement," Sustainability, MDPI, vol. 12(14), pages 1-37, July.
    18. Erika Sandow & Olle Westerlund & Urban Lindgren, 2014. "Is Your Commute Killing You? On the Mortality Risks of Long-Distance Commuting," Environment and Planning A, , vol. 46(6), pages 1496-1516, June.
    19. Rafal Stachyra & Kamil Roman, 2021. "Analysis of Accessibility of Public Transport in Warsaw in the Opinion of Users," Postmodern Openings, Editura Lumen, Department of Economics, vol. 12(3), pages 384-403, August.
    20. Sofiia Miliutenko & Ingeborg Kluts & Kristina Lundberg & Susanna Toller & Helge Brattebø & Harpa Birgisdóttir & José Potting, 2014. "Consideration Of Life Cycle Energy Use And Greenhouse Gas Emissions In Road Infrastructure Planning Processes: Examples Of Sweden, Norway, Denmark And The Netherlands," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7092-:d:296629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.