IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3858-d248700.html
   My bibliography  Save this article

Inventory of Spatio-Temporal Methane Emissions from Livestock and Poultry Farming in Beijing

Author

Listed:
  • Yixuan Guo

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
    Tianjin Key Laboratory of Environmental Change and Ecological Restoration, School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China)

  • Yidong Wang

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
    Tianjin Key Laboratory of Environmental Change and Ecological Restoration, School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China)

  • Shufeng Chen

    (Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China)

  • Shunan Zheng

    (Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China)

  • Changcheng Guo

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China)

  • Dongmei Xue

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
    Tianjin Key Laboratory of Environmental Change and Ecological Restoration, School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China)

  • Yakov Kuzyakov

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
    Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany)

  • Zhong-Liang Wang

    (Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China
    Tianjin Key Laboratory of Environmental Change and Ecological Restoration, School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China)

Abstract

Livestock and poultry farming sectors are among the largest anthropogenic methane (CH 4 ) emission sources, mainly from enteric fermentation and manure management. Previous inventories of CH 4 emission were generally based on constant emission factor (EF) per head, which had some weaknesses mainly due to the succession of breeding and feeding systems over decades. Here, more reliable long-term changes of CH 4 emissions from livestock and poultry farming in Beijing are estimated using the dynamic EFs based on the Intergovernmental Panel on Climate Change (IPCC) Tier 2 method, and high-resolution spatial patterns of CH 4 emissions are also estimated with intensive field survey. The results showed that the estimated CH 4 emissions derived by dynamic EFs were approximately 13–19% lower than those based on the constant EF before 2010. After 2011, however, the dynamic EFs-derived CH 4 emissions were a little higher (3%) than the constant EF method. Temporal CH 4 emissions in Beijing had experienced four developing stages (1978–1988: stable; 1989–1998: slow growth; 1999–2004: rapid growth and reached hot moments; 2005–2014: decline) during 1978–2014. Over the first two decades, the contributions of pigs (45%) and cattle (46%) to annual CH 4 emission were similar; subsequently, the cattle emitted more CH 4 compared to the pigs. At a spatial scale, Shunyi, Daxing, and Tongzhou districts with more cattle and pigs are the hotspots of CH 4 emission. In conclusion, the dynamic EFs method obviously improved the spatio-temporal estimates of CH 4 emissions compared to the constant EF approach, and the improvements depended on the period and aquaculture structure. Therefore, the dynamic EFs method should be recommended for estimating CH 4 emissions from livestock and poultry farming in the future.

Suggested Citation

  • Yixuan Guo & Yidong Wang & Shufeng Chen & Shunan Zheng & Changcheng Guo & Dongmei Xue & Yakov Kuzyakov & Zhong-Liang Wang, 2019. "Inventory of Spatio-Temporal Methane Emissions from Livestock and Poultry Farming in Beijing," Sustainability, MDPI, vol. 11(14), pages 1-11, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3858-:d:248700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eska Nugrahaeningtyas & Chun-Youl Baek & Jung-Hwan Jeon & Hyun-Jung Jo & Kyu-Hyun Park, 2018. "Greenhouse Gas Emission Intensities for the Livestock Sector in Indonesia, Based on the National Specific Data," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    2. William J. Ripple & Pete Smith & Helmut Haberl & Stephen A. Montzka & Clive McAlpine & Douglas H. Boucher, 2014. "Ruminants, climate change and climate policy," Nature Climate Change, Nature, vol. 4(1), pages 2-5, January.
    3. Dario Caro & Steven Davis & Simone Bastianoni & Ken Caldeira, 2014. "Global and regional trends in greenhouse gas emissions from livestock," Climatic Change, Springer, vol. 126(1), pages 203-216, September.
    4. Zhou, J.B. & Jiang, M.M. & Chen, G.Q., 2007. "Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949-2003," Energy Policy, Elsevier, vol. 35(7), pages 3759-3767, July.
    5. Abha Chhabra & K. Manjunath & Sushma Panigrahy & J. Parihar, 2013. "Greenhouse gas emissions from Indian livestock," Climatic Change, Springer, vol. 117(1), pages 329-344, March.
    6. An Ha Truong & Minh Thuy Kim & Thi Thu Nguyen & Ngoc Tung Nguyen & Quang Trung Nguyen, 2018. "Methane, Nitrous Oxide and Ammonia Emissions from Livestock Farming in the Red River Delta, Vietnam: An Inventory and Projection for 2000–2030," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajer Ammar & Sourour Abidi & Mediha Ayed & Nizar Moujahed & Mario E. deHaro Martí & Mireille Chahine & Rachid Bouraoui & Secundino López & Hatem Cheikh M’hamed & Haikel Hechlef, 2020. "Estimation of Tunisian Greenhouse Gas Emissions from Different Livestock Species," Agriculture, MDPI, vol. 10(11), pages 1-17, November.
    2. Plaza, Pablo Ignacio & Lambertucci, Sergio Agustín, 2022. "Mitigating GHG emissions: A global ecosystem service provided by obligate scavenging birds," Ecosystem Services, Elsevier, vol. 56(C).
    3. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    4. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    5. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    6. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    7. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    8. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    9. Helen Harwatt & Joan Sabaté & Gidon Eshel & Sam Soret & William Ripple, 2017. "Substituting beans for beef as a contribution toward US climate change targets," Climatic Change, Springer, vol. 143(1), pages 261-270, July.
    10. Supriya Verma & Friedhelm Taube & Carsten S. Malisch, 2021. "Examining the Variables Leading to Apparent Incongruity between Antimethanogenic Potential of Tannins and Their Observed Effects in Ruminants—A Review," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    11. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    12. Mahendra Kumar Singh & Deep Mukherjee, 2019. "Drivers of greenhouse gas emissions in the United States: revisiting STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 3015-3031, December.
    13. Daniel H. Pope & Johan O. Karlsson & Phillip Baker & David McCoy, 2021. "Examining the Environmental Impacts of the Dairy and Baby Food Industries: Are First-Food Systems a Crucial Missing Part of the Healthy and Sustainable Food Systems Agenda Now Underway?," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    14. Xiao Chen & Tao Tao & Jiaxin Zhou & Helong Yu & Hongliang Guo & Hongbing Chen, 2023. "Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    15. Min Su & Rui Jiang & Rongrong Li, 2017. "Investigating Low-Carbon Agriculture: Case Study of China’s Henan Province," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    16. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    17. Chen, Minpeng & Sun, Fu & Shindo, Junko, 2016. "China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 10-27.
    18. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    19. Xieqihua Liu & Yongmei Ye & Dongdong Ge & Zhen Wang & Bin Liu, 2022. "Study on the Evolution and Trends of Agricultural Carbon Emission Intensity and Agricultural Economic Development Levels—Evidence from Jiangxi Province," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    20. J. Joseph Speidel & Jane N. O’Sullivan, 2023. "Advancing the Welfare of People and the Planet with a Common Agenda for Reproductive Justice, Population, and the Environment," World, MDPI, vol. 4(2), pages 1-29, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3858-:d:248700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.