IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i4p181-d295652.html
   My bibliography  Save this article

CCS Projects: How Regulatory Framework Influences Their Deployment

Author

Listed:
  • Natalia Romasheva

    (Organization and Management Department, Saint-Petersburg Mining University, Saint-Petersburg 199106, Russia)

  • Alina Ilinova

    (Organization and Management Department, Saint-Petersburg Mining University, Saint-Petersburg 199106, Russia)

Abstract

Preventing the effects of climate change is one of the most pressing challenges of this century. Carbon capture and storage (CCS) technology takes up a promising position in the achievement of a low-carbon future. Currently, CCS projects are implemented not only for CO 2 storage but also for its usage in industries, in conformity with the principles of a circular economy. To date, a number of countries have accumulated experience in launching and implementing CCS projects. At the same time, the peculiarities and pace of technology development around the world remain different. This paper attempts to identify key factors that, first, generally affect CCS projects deployment, and second, create favorable conditions for CCS technologies development. Based on an extensive literature review and the experience of different countries, classification and interpretation of these factors are offered, justifying their impact on CCS projects. As a result of this paper, the authors present an assessment of the maturity of policy incentives and regulations in the field of CCS for different countries with revealed dependence between the level and effectiveness of CCS projects’ implementation, confirming the adequacy of the offered approaches and identifying measures that ensure success in CCS. The methodology of this study includes case studies, a modified PEST analysis, system-oriented analysis, the checklist method, and regression analyses.

Suggested Citation

  • Natalia Romasheva & Alina Ilinova, 2019. "CCS Projects: How Regulatory Framework Influences Their Deployment," Resources, MDPI, vol. 8(4), pages 1-19, December.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:4:p:181-:d:295652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/4/181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/4/181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krahé, Max & Heidug, Wolf & Ward, John & Smale, Robin, 2013. "From demonstration to deployment: An economic analysis of support policies for carbon capture and storage," Energy Policy, Elsevier, vol. 60(C), pages 753-763.
    2. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    3. Zhao, Xiaoli & Yin, Haitao & Zhao, Yue, 2015. "Impact of environmental regulations on the efficiency and CO2 emissions of power plants in China," Applied Energy, Elsevier, vol. 149(C), pages 238-247.
    4. Dapeng, Liang & Weiwei, Wu, 2009. "Barriers and incentives of CCS deployment in China: Results from semi-structured interviews," Energy Policy, Elsevier, vol. 37(6), pages 2421-2432, June.
    5. Mardones, Cristian & Baeza, Nicolas, 2018. "Economic and environmental effects of a CO2 tax in Latin American countries," Energy Policy, Elsevier, vol. 114(C), pages 262-273.
    6. Halkos, George E. & Paizanos, Epameinondas Α., 2016. "The effects of fiscal policy on CO2 emissions: Evidence from the U.S.A," Energy Policy, Elsevier, vol. 88(C), pages 317-328.
    7. Pavel Tcvetkov & Alexey Cherepovitsyn & Sergey Fedoseev, 2019. "The Changing Role of CO 2 in the Transition to a Circular Economy: Review of Carbon Sequestration Projects," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    8. Kirchner, Mathias & Sommer, Mark & Kratena, Kurt & Kletzan-Slamanig, Daniela & Kettner-Marx, Claudia, 2019. "CO2 taxes, equity and the double dividend – Macroeconomic model simulations for Austria," Energy Policy, Elsevier, vol. 126(C), pages 295-314.
    9. Winans, K. & Kendall, A. & Deng, H., 2017. "The history and current applications of the circular economy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 825-833.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    2. Gennadiy Stroykov & Alexey Y. Cherepovitsyn & Elizaveta A. Iamshchikova, 2020. "Powering Multiple Gas Condensate Wells in Russia’s Arctic: Power Supply Systems Based on Renewable Energy Sources," Resources, MDPI, vol. 9(11), pages 1-15, November.
    3. Sun, Haofei & Wang, Haoxiang & Zeng, Yimin & Liu, Jing, 2023. "Corrosion challenges in supercritical CO2 transportation, storage, and utilization—a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Saadat Ullah Khan Suri & Muhammad Khaliq Majeed & Muhammad Shakeel Ahmad, 2023. "Simulation Analysis of Novel Integrated LNG Regasification-Organic Rankine Cycle and Anti-Sublimation Process to Generate Clean Energy," Energies, MDPI, vol. 16(6), pages 1-20, March.
    5. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.
    6. Natalya Romasheva & Alina Cherepovitsyna, 2023. "Renewable Energy Sources in Decarbonization: The Case of Foreign and Russian Oil and Gas Companies," Sustainability, MDPI, vol. 15(9), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrien Nicolle & Diego Cebreros & Olivier Massol & Emma Jagu, 2023. "Modeling CO2 pipeline systems: An analytical lens for CCS regulation," Post-Print hal-04297191, HAL.
    2. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    3. Mardones, Cristian & García, Catalina, 2020. "Effectiveness of CO2 taxes on thermoelectric power plants and industrial plants," Energy, Elsevier, vol. 206(C).
    4. Valentina Kashintseva & Wadim Strielkowski & Justas Streimikis & Tatiana Veynbender, 2018. "Consumer Attitudes towards Industrial CO 2 Capture and Storage Products and Technologies," Energies, MDPI, vol. 11(10), pages 1-14, October.
    5. John A. Mathews, 2020. "Schumpeterian economic dynamics of greening: propagation of green eco-platforms," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 929-948, September.
    6. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Hazem Ali & Ting Chen & Yunhong Hao, 2021. "Sustainable Manufacturing Practices, Competitive Capabilities, and Sustainable Performance: Moderating Role of Environmental Regulations," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    8. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    9. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    10. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    11. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
    12. Marat M. Khayrutdinov & Vladimir I. Golik & Alexander V. Aleksakhin & Ekaterina V. Trushina & Natalia V. Lazareva & Yulia V. Aleksakhina, 2022. "Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining," Resources, MDPI, vol. 11(10), pages 1-16, September.
    13. Rita Lopes & Rui Santos & Nuno Videira & Paula Antunes, 2021. "Co-creating a Vision and Roadmap for Circular Economy in the Food and Beverages Packaging Sector," Circular Economy and Sustainability,, Springer.
    14. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability,, Springer.
    15. Yang, Jin & Song, Dan & Wu, Feng, 2017. "Regional variations of environmental co-benefits of wind power generation in China," Applied Energy, Elsevier, vol. 206(C), pages 1267-1281.
    16. Cristian Mardones, 2021. "Analysis on complementarity between a CO2 tax and an emissions trading system to reduce industrial emissions in Chile," Energy & Environment, , vol. 32(5), pages 820-833, August.
    17. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    18. Mark Sommer & Franz Sinabell & Gerhard Streicher, 2020. "Auswirkungen des COVID-19-bedingten Konjunktureinbruchs auf die Emissionen von Treibhausgasen in Österreich. Ergebnisse einer ersten Einschätzung," WIFO Working Papers 600, WIFO.
    19. Li, Xin & Li, Zheng & Su, Chi-Wei & Umar, Muhammad & Shao, Xuefeng, 2022. "Exploring the asymmetric impact of economic policy uncertainty on China's carbon emissions trading market price: Do different types of uncertainty matter?," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    20. Attílio, Luccas Assis & Faria, João Ricardo & Rodrigues, Mauro, 2023. "Does monetary policy impact CO2 emissions? A GVAR analysis," Energy Economics, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:4:p:181-:d:295652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.