IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics1364032121011333.html
   My bibliography  Save this article

Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes

Author

Listed:
  • Huang, Jijiang
  • Veksha, Andrei
  • Chan, Wei Ping
  • Giannis, Apostolos
  • Lisak, Grzegorz

Abstract

Plastic waste management becomes imperative to prevent detrimental plastic-related environmental impacts. These relate to the huge plastic waste amount in both generation and disposal, non-biodegradability of most plastic waste, persistent nature of plastic waste in the environment, and the increasing concern of micro- and nanoplastics on human health. To continue exporting the use and benefits of plastic materials while mitigating their impacts to the planet, reuse, recovery and recycling of plastic waste are strongly encouraged. This would promote optimization of the value chain of plastic-based materials and validate the concept of a circular polymer economy. Chemical recycling techniques have been extensively studied for energy and material recovery from plastic waste, which are assisted by catalysts for enhanced process efficiency. In this review, the research progress of the applied catalysts in various thermochemical techniques is comprehensively summarized and assessed, covering the non-catalytic and catalytic pyrolysis, reforming of pyrolysis volatiles, and gasification processes. The impacts of feedstock, process conditions and catalyst properties on the quality and yield of the products are carefully examined. Finally, the practical challenges and perspectives on catalyst design and process improvement for material circularity are suggested and the emerging novel processes for the degradation of plastic waste are highlighted.

Suggested Citation

  • Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121011333
    DOI: 10.1016/j.rser.2021.111866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121011333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Bin & Wang, Weizuo & Jin, Hui, 2020. "Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water," Energy, Elsevier, vol. 191(C).
    2. Kalargaris, Ioannis & Tian, Guohong & Gu, Sai, 2017. "The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine," Energy, Elsevier, vol. 131(C), pages 179-185.
    3. Munir, Dureem & Irfan, Muhammad F. & Usman, Muhammad R., 2018. "Hydrocracking of virgin and waste plastics: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 490-515.
    4. Cho, Min-Hwan & Mun, Tae-Young & Choi, Young-Kon & Kim, Joo-Sik, 2014. "Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal," Energy, Elsevier, vol. 70(C), pages 128-134.
    5. Ahmed, I.I. & Nipattummakul, N. & Gupta, A.K., 2011. "Characteristics of syngas from co-gasification of polyethylene and woodchips," Applied Energy, Elsevier, vol. 88(1), pages 165-174, January.
    6. Natacha Phetyim & Sommai Pivsa-Art, 2018. "Prototype Co-Pyrolysis of Used Lubricant Oil and Mixed Plastic Waste to Produce a Diesel-Like Fuel," Energies, MDPI, vol. 11(11), pages 1-11, November.
    7. Azubuike Francis Anene & Siw Bodil Fredriksen & Kai Arne Sætre & Lars-Andre Tokheim, 2018. "Experimental Study of Thermal and Catalytic Pyrolysis of Plastic Waste Components," Sustainability, MDPI, vol. 10(11), pages 1-11, October.
    8. Zichun Wang & Yijiao Jiang & Olivier Lafon & Julien Trébosc & Kyung Duk Kim & Catherine Stampfl & Alfons Baiker & Jean-Paul Amoureux & Jun Huang, 2016. "Brønsted acid sites based on penta-coordinated aluminum species," Nature Communications, Nature, vol. 7(1), pages 1-5, December.
    9. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 68(C), pages 735-743.
    10. Kaixin Li & Shao Wee Lee & Guoan Yuan & Junxi Lei & Shengxuan Lin & Piyarat Weerachanchai & Yanhui Yang & Jing-Yuan Wang, 2016. "Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture," Energies, MDPI, vol. 9(6), pages 1-15, June.
    11. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    12. Lin, Xiaona & Zhang, Zhijun & Wang, Qingwen, 2019. "Evaluation of zeolite catalysts on product distribution and synergy during wood-plastic composite catalytic pyrolysis," Energy, Elsevier, vol. 189(C).
    13. Stig Helveg & Carlos López-Cartes & Jens Sehested & Poul L. Hansen & Bjerne S. Clausen & Jens R. Rostrup-Nielsen & Frank Abild-Pedersen & Jens K. Nørskov, 2004. "Atomic-scale imaging of carbon nanofibre growth," Nature, Nature, vol. 427(6973), pages 426-429, January.
    14. Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
    15. Lucio Zaccariello & Maria Laura Mastellone, 2015. "Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal," Energies, MDPI, vol. 8(8), pages 1-17, August.
    16. Cho, Min-Hwan & Mun, Tae-Young & Kim, Joo-Sik, 2013. "Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar," Energy, Elsevier, vol. 53(C), pages 299-305.
    17. Bai, Bin & Liu, Yigang & Wang, Qiuxia & Zou, Jian & Zhang, Hua & Jin, Hui & Li, Xianwen, 2019. "Experimental investigation on gasification characteristics of plastic wastes in supercritical water," Renewable Energy, Elsevier, vol. 135(C), pages 32-40.
    18. Winans, K. & Kendall, A. & Deng, H., 2017. "The history and current applications of the circular economy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 825-833.
    19. Namioka, Tomoaki & Saito, Atsushi & Inoue, Yukiharu & Park, Yeongsu & Min, Tai-jin & Roh, Seon-ah & Yoshikawa, Kunio, 2011. "Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst," Applied Energy, Elsevier, vol. 88(6), pages 2019-2026, June.
    20. V. Tournier & C. M. Topham & A. Gilles & B. David & C. Folgoas & E. Moya-Leclair & E. Kamionka & M.-L. Desrousseaux & H. Texier & S. Gavalda & M. Cot & E. Guémard & M. Dalibey & J. Nomme & G. Cioci & , 2020. "An engineered PET depolymerase to break down and recycle plastic bottles," Nature, Nature, vol. 580(7802), pages 216-219, April.
    21. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    2. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Arkadiusz Gola & Leszek Mieszkalski, 2022. "Potential Routes to the Sustainability of the Food Packaging Industry," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    3. Chaoxia Shan & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2023. "Environmental Impact of Plastic Recycling in Terms of Energy Consumption: A Comparison of Japan’s Mechanical and Chemical Recycling Technologies," Energies, MDPI, vol. 16(5), pages 1-15, February.
    4. Tan, Kai Qi & Ahmad, Mohd Azmier & Oh, Wen Da & Low, Siew Chun, 2023. "Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2022. "Downdraft co-gasification of high ash biomass and plastics," Energy, Elsevier, vol. 243(C).
    2. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    3. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    4. Cho, Min-Hwan & Choi, Young-Kon & Kim, Joo-Sik, 2015. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich prod," Energy, Elsevier, vol. 87(C), pages 586-593.
    5. Yao, Dingding & Wang, Chi-Hwa, 2020. "Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts," Applied Energy, Elsevier, vol. 265(C).
    6. Hannah Jones & Florence Saffar & Vasileios Koutsos & Dipa Ray, 2021. "Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites," Energies, MDPI, vol. 14(21), pages 1-43, November.
    7. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Li, Jinhu & Burra, Kiran Raj G. & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2021. "Co-gasification of high-density polyethylene and pretreated pine wood," Applied Energy, Elsevier, vol. 285(C).
    9. Octávio Alves & Luís Calado & Roberta M. Panizio & Catarina Nobre & Eliseu Monteiro & Paulo Brito & Margarida Gonçalves, 2022. "Gasification of Solid Recovered Fuels with Variable Fractions of Polymeric Materials," Energies, MDPI, vol. 15(21), pages 1-19, November.
    10. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    11. David Antonio Buentello-Montoya & Miguel Ángel Armenta-Gutiérrez & Victor Manuel Maytorena-Soria, 2023. "Parametric Modelling Study to Determine the Feasibility of the Co-Gasification of Macroalgae and Plastics for the Production of Hydrogen-Rich Syngas," Energies, MDPI, vol. 16(19), pages 1-18, September.
    12. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    13. Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
    14. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    15. Huo, Erguang & Duan, Dengle & Lei, Hanwu & Liu, Chao & Zhang, Yayun & Wu, Jie & Zhao, Yunfeng & Huang, Zhiyang & Qian, Moriko & Zhang, Qingfa & Lin, Xiaona & Wang, Chenxi & Mateo, Wendy & Villota, Elm, 2020. "Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts," Energy, Elsevier, vol. 199(C).
    16. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    17. Ichiro Tsuchimoto & Yuya Kajikawa, 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-39, December.
    18. Zhao, Xiang & You, Fengqi, 2021. "Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives," Applied Energy, Elsevier, vol. 283(C).
    19. Parrillo, Francesco & Ardolino, Filomena & Boccia, Carmine & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2023. "Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 273(C).
    20. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121011333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.