IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035302.html
   My bibliography  Save this article

Thermo-chemical disposal of plastic waste from end-of-life vehicles (ELVs) using CO2

Author

Listed:
  • Kim, Jung-Hun
  • Jung, Sungyup
  • Lee, Taewoo
  • Tsang, Yiu Fai
  • Kwon, Eilhann E.

Abstract

The source reduction of plastic waste could be an effective means to attenuate hazardous environmental problems triggered by microplastics. Energy recovery from plastic waste through thermochemical processes is a desirable valorization route. To realize the grand challenges, plastic waste derived from end-of-life vehicles (ELVs) was pyrolyzed. To propose a greener feature, CO2 was introduced as a mediator to maximize carbon allocation to the gaseous pyrogenic product (syngas) by CO2 reduction to CO and concurrent oxidation of volatile matter (VM) that was evolved from the thermolysis of plastic waste. As such, fundamental and systematic works were conducted to delineate the CO2 effects on conversion of VMs. This study experimentally proved that CO2 promotes thermal cracking in line with C–C bond scissions. However, the reaction rate for the conversion of CO2 and VM into CO via homogeneous reaction was not fast. Therefore, a Ni-based catalyst was employed to accelerate the reaction rate. However, there was coke deposition on the catalyst surface. To prevent coke formation, we chose a method to enhance CO2 reduction to CO and the oxidation of VM. Thus, three bimetallic catalysts were used for catalytic pyrolysis. Among the three bimetallic catalysts, Rh0.1Ni1/SiO2 was the most effective.

Suggested Citation

  • Kim, Jung-Hun & Jung, Sungyup & Lee, Taewoo & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Thermo-chemical disposal of plastic waste from end-of-life vehicles (ELVs) using CO2," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035302
    DOI: 10.1016/j.energy.2023.130136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aldo Alvarez-Risco & Shyla Del-Aguila-Arcentales & Marc A. Rosen, 2022. "Introduction to the Circular Economy," CSR, Sustainability, Ethics & Governance, in: Aldo Alvarez-Risco & Marc A. Rosen & Shyla Del-Aguila-Arcentales (ed.), Towards a Circular Economy, chapter 0, pages 3-23, Springer.
    2. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    3. Jung, Sungyup & Lee, Sangyoon & Park, Sanghyuk & Kwon, Kyungjung & Tsang, Yiu Fai & Chen, Wei-Hsin & Park, Young-Kwon & Kwon, Eilhann E., 2022. "Upgrading spent battery separator into syngas and hydrocarbons through CO2-Assisted thermochemical platform," Energy, Elsevier, vol. 242(C).
    4. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Sharma, Bhasha & Goswami, Yagyadatta & Sharma, Shreya & Shekhar, Shashank, 2021. "Inherent roadmap of conversion of plastic waste into energy and its life cycle assessment: A frontrunner compendium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Kiss, Anton A. & Smith, Robin, 2020. "Rethinking energy use in distillation processes for a more sustainable chemical industry," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    2. Wiranarongkorn, Kunlanan & Im-orb, Karittha & Panpranot, Joongjai & Maréchal, François & Arpornwichanop, Amornchai, 2021. "Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation," Energy, Elsevier, vol. 226(C).
    3. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Albuquerque, Allan Almeida & Ng, Flora T.T. & Danielski, Leandro & Stragevitch, Luiz, 2022. "Reactive separation processes applied to biodiesel production from residual oils and fats: Design, optimization and techno-economic assessment of routes using solid catalysts," Energy, Elsevier, vol. 240(C).
    5. Galusnyak, Stefan Cristian & Petrescu, Letitia & Cormos, Calin-Cristian, 2022. "Classical vs. reactive distillation technologies for biodiesel production: An environmental comparison using LCA methodology," Renewable Energy, Elsevier, vol. 192(C), pages 289-299.
    6. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    7. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    8. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Arkadiusz Gola & Leszek Mieszkalski, 2022. "Potential Routes to the Sustainability of the Food Packaging Industry," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    9. Zivar Zeynalova & Natavan Namazova, 2022. "Revealing Consumer Behavior toward Green Consumption," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    10. Santa Margarida Santos & Catarina Nobre & Paulo Brito & Margarida Gonçalves, 2023. "Brief Overview of Refuse-Derived Fuel Production and Energetic Valorization: Applied Technology and Main Challenges," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    11. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Eyvazi-Abhari, Nargess & Khalili-Garakani, Amirhossein & Kasiri, Norollah, 2023. "Reaction/distillation matrix algorithm development to cover sequences containing reactive HIDiC: Validation in optimized process of dimethyl carbonate production," Energy, Elsevier, vol. 276(C).
    13. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    14. Wu, Benteng & Lin, Richen & Bose, Archishman & Huerta, Jorge Diaz & Kang, Xihui & Deng, Chen & Murphy, Jerry D., 2023. "Economic and environmental viability of biofuel production from organic wastes: A pathway towards competitive carbon neutrality," Energy, Elsevier, vol. 285(C).
    15. Wang, Lili & Zhao, Jun & Teng, Junfeng & Dong, Shilong & Wang, Yinglong & Xiang, Shuguang & Sun, Xiaoyan, 2022. "Study on an energy-saving process for separation ethylene elycol mixture through heat-pump, heat-integration and ORC driven by waste-heat," Energy, Elsevier, vol. 243(C).
    16. Jung, Sungyup & Lee, Sangyoon & Park, Sanghyuk & Kwon, Kyungjung & Tsang, Yiu Fai & Chen, Wei-Hsin & Park, Young-Kwon & Kwon, Eilhann E., 2022. "Upgrading spent battery separator into syngas and hydrocarbons through CO2-Assisted thermochemical platform," Energy, Elsevier, vol. 242(C).
    17. Tan, Kai Qi & Ahmad, Mohd Azmier & Oh, Wen Da & Low, Siew Chun, 2023. "Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    18. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    19. Kumar, Manish & Bolan, Shiv & Padhye, Lokesh P. & Konarova, Muxina & Foong, Shin Ying & Lam, Su Shiung & Wagland, Stuart & Cao, Runzi & Li, Yang & Batalha, Nuno & Ahmed, Mohamed & Pandey, Ashok & Sidd, 2023. "Retrieving back plastic wastes for conversion to value added petrochemicals: opportunities, challenges and outlooks," Applied Energy, Elsevier, vol. 345(C).
    20. Letitia Petrescu & Codruta-Maria Cormos, 2022. "Classical and Process Intensification Methods for Acetic Acid Concentration: Technical and Environmental Assessment," Energies, MDPI, vol. 15(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.