IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v70y2014icp128-134.html
   My bibliography  Save this article

Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal

Author

Listed:
  • Cho, Min-Hwan
  • Mun, Tae-Young
  • Choi, Young-Kon
  • Kim, Joo-Sik

Abstract

Air gasification of mixed plastic waste was conducted in a two-stage gasifier. The effects of the combination of olivine as the fluidized bed material and activated carbon with or without other additives for tar cracking, as well as a Ni-plated distributor, the use of steam as a gasifying agent, and the calcination of olivine on the producer gas compositions and tar production, were also investigated. The maximum H2 concentration (27.3 vol%) was obtained with 900 g of activated carbon in the tar-cracking zone, and through the use of calcined olivine as the bed material. In the experiments, the maximum tar removal efficiency calculated using a base case reached 98.2%. The LHVs of the producer gases were in the range of 6.1–9.0 MJ/Nm3. The increase in the activated carbon amount led to an enhanced H2 production, as well as a decrease in tar production. The Ni-plated distributor was found to be effective for tar removal. In the application of dolomite in the tar-cracking zone and the use of steam as a fluidizing medium resulted in a high rate of HCl removal. The minimum HCl concentration in the producer gases was under 1 ppm.

Suggested Citation

  • Cho, Min-Hwan & Mun, Tae-Young & Choi, Young-Kon & Kim, Joo-Sik, 2014. "Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal," Energy, Elsevier, vol. 70(C), pages 128-134.
  • Handle: RePEc:eee:energy:v:70:y:2014:i:c:p:128-134
    DOI: 10.1016/j.energy.2014.03.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214003612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Siyi & Zhou, Yangmin & Yi, Chuijie, 2012. "Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor," Energy, Elsevier, vol. 44(1), pages 391-395.
    2. Yang, Yi & Jin, Shiping & Lin, Yixin & Huang, Suyi & Yang, Haiping, 2012. "Catalytic gasification of tobacco rob in steam–nitrogen mixture: Kinetic study and fuel gas analysis," Energy, Elsevier, vol. 44(1), pages 509-514.
    3. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    4. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    5. Cho, Min-Hwan & Mun, Tae-Young & Kim, Joo-Sik, 2013. "Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar," Energy, Elsevier, vol. 53(C), pages 299-305.
    6. Cho, Min-Hwan & Mun, Tae-Young & Kim, Joo-Sik, 2013. "Production of low-tar producer gas from air gasification of mixed plastic waste in a two-stage gasifier using olivine combined with activated carbon," Energy, Elsevier, vol. 58(C), pages 688-694.
    7. Di Gregorio, F. & Zaccariello, Lucio, 2012. "Fluidized bed gasification of a packaging derived fuel: energetic, environmental and economic performances comparison for waste-to-energy plants," Energy, Elsevier, vol. 42(1), pages 331-341.
    8. Hamel, Stefan & Hasselbach, Holger & Weil, Steffen & Krumm, Wolfgang, 2007. "Autothermal two-stage gasification of low-density waste-derived fuels," Energy, Elsevier, vol. 32(2), pages 95-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. David Antonio Buentello-Montoya & Miguel Ángel Armenta-Gutiérrez & Victor Manuel Maytorena-Soria, 2023. "Parametric Modelling Study to Determine the Feasibility of the Co-Gasification of Macroalgae and Plastics for the Production of Hydrogen-Rich Syngas," Energies, MDPI, vol. 16(19), pages 1-18, September.
    3. Cho, Min-Hwan & Choi, Young-Kon & Kim, Joo-Sik, 2015. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich prod," Energy, Elsevier, vol. 87(C), pages 586-593.
    4. Han, Si Woo & Lee, Jeong Jae & Tokmurzin, Diyar & Lee, Seok Hyeong & Nam, Ji Young & Park, Sung Jin & Ra, Ho Won & Mun, Tae-Young & Yoon, Sang Jun & Yoon, Sung Min & Moon, Ji Hong & Lee, Jae Goo & Kim, 2022. "Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effects of temperature and equivalence ratio," Energy, Elsevier, vol. 238(PC).
    5. Łukasz Sobol & Karol Wolski & Adam Radkowski & Elżbieta Piwowarczyk & Maciej Jurkowski & Henryk Bujak & Arkadiusz Dyjakon, 2022. "Determination of Energy Parameters and Their Variability between Varieties of Fodder and Turf Grasses," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    6. M. Shahabuddin & Tanvir Alam, 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies," Energies, MDPI, vol. 15(12), pages 1-20, June.
    7. Jeong, Yong-Seong & Choi, Young-Kon & Kim, Joo-Sik, 2019. "Three-stage air gasification of waste polyethylene: In-situ regeneration of active carbon used as a tar removal additive," Energy, Elsevier, vol. 166(C), pages 335-342.
    8. Choi, Young-Kon & Cho, Min-Hwan & Kim, Joo-Sik, 2015. "Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal," Energy, Elsevier, vol. 91(C), pages 160-167.
    9. Ichiro Tsuchimoto & Yuya Kajikawa, 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-39, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 68(C), pages 735-743.
    2. Han, Si Woo & Lee, Jeong Jae & Tokmurzin, Diyar & Lee, Seok Hyeong & Nam, Ji Young & Park, Sung Jin & Ra, Ho Won & Mun, Tae-Young & Yoon, Sang Jun & Yoon, Sung Min & Moon, Ji Hong & Lee, Jae Goo & Kim, 2022. "Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effects of temperature and equivalence ratio," Energy, Elsevier, vol. 238(PC).
    3. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    4. Cho, Min-Hwan & Choi, Young-Kon & Kim, Joo-Sik, 2015. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich prod," Energy, Elsevier, vol. 87(C), pages 586-593.
    5. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    6. Chiang, Kung-Yuh & Lu, Cheng-Han & Lin, Ming-Hui & Chien, Kuang-Li, 2013. "Reducing tar yield in gasification of paper-reject sludge by using a hot-gas cleaning system," Energy, Elsevier, vol. 50(C), pages 47-53.
    7. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    8. Ichiro Tsuchimoto & Yuya Kajikawa, 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-39, December.
    9. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    10. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    11. Moghadam, Reza Alipour & Yusup, Suzana & Uemura, Yoshimitsu & Chin, Bridgid Lai Fui & Lam, Hon Loong & Al Shoaibi, Ahmed, 2014. "Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process," Energy, Elsevier, vol. 75(C), pages 40-44.
    12. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    13. Choi, Min-Jun & Jeong, Yong-Seong & Kim, Joo-Sik, 2021. "Air gasification of polyethylene terephthalate using a two-stage gasifier with active carbon for the production of H2 and CO," Energy, Elsevier, vol. 223(C).
    14. Zeng, Xi & Wang, Fang & Li, Hongling & Wang, Yin & Dong, Li & Yu, Jian & Xu, Guangwen, 2014. "Pilot verification of a low-tar two-stage coal gasification process with a fluidized bed pyrolyzer and fixed bed gasifier," Applied Energy, Elsevier, vol. 115(C), pages 9-16.
    15. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    16. Huang, Zhen & He, Fang & Zheng, Anqing & Zhao, Kun & Chang, Sheng & Zhao, Zengli & Li, Haibin, 2013. "Synthesis gas production from biomass gasification using steam coupling with natural hematite as oxygen carrier," Energy, Elsevier, vol. 53(C), pages 244-251.
    17. Hernández, J.J. & Ballesteros, R. & Aranda, G., 2013. "Characterisation of tars from biomass gasification: Effect of the operating conditions," Energy, Elsevier, vol. 50(C), pages 333-342.
    18. Choi, Young-Kon & Cho, Min-Hwan & Kim, Joo-Sik, 2015. "Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal," Energy, Elsevier, vol. 91(C), pages 160-167.
    19. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:70:y:2014:i:c:p:128-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.