IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v44y2012i1p391-395.html
   My bibliography  Save this article

Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor

Author

Listed:
  • Luo, Siyi
  • Zhou, Yangmin
  • Yi, Chuijie

Abstract

The catalytic steam gasification of municipal solid waste for syngas production was conducted in a lab-scale fixed-bed reactor. The influence of the reactor temperature, steam to carbon ratio (S/C) and catalyst type (NiO/γ-Al2O3 or calcined dolomite) on the gas yield, gas composition, H2/CO molar ratio and carbon conversion efficiency were investigated. The results indicated that increasing reactor temperature resulted in greater gas production in the initial pyrolysis and improved endothermic reactions (gasification of char, catalytic cracking and reforming of tar), which resulted in the increase of syngas yield. Compared with MSW catalytic pyrolysis, the introduction of steam leads to more tar and char participating in steam gasification, which resulted in a rapid increase of syngas yield and carbon conversion efficiency. NiO/γ-Al2O3 catalyst revealed better catalytic performance for the cracking of tar than calcined dolomite. The highest H2 content (54.22%) and gas yield (1.75N m3/kg) were achieved at 900°C, S/C being 2.41 with NiO/γ-Al2O3 as catalyst.

Suggested Citation

  • Luo, Siyi & Zhou, Yangmin & Yi, Chuijie, 2012. "Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor," Energy, Elsevier, vol. 44(1), pages 391-395.
  • Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:391-395
    DOI: 10.1016/j.energy.2012.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212004677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:391-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.