IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp32-40.html
   My bibliography  Save this article

Experimental investigation on gasification characteristics of plastic wastes in supercritical water

Author

Listed:
  • Bai, Bin
  • Liu, Yigang
  • Wang, Qiuxia
  • Zou, Jian
  • Zhang, Hua
  • Jin, Hui
  • Li, Xianwen

Abstract

Supercritical water gasification technology is widely used in the conversion of organic waste because of its clean and efficient characteristics. As a high polymer, plastic may undergo complex processes such as depolymerization and gasification in supercritical water, and its optimal operating conditions have rarely been reported. In this paper, the experiments of high impact polystyrene (HIPS) plastic supercritical water gasification were carried out at a reaction temperature of 500–800 °C, a reaction time of 1–60min, a feed concentration of 2–10 wt% and a reaction pressure of 22–25 MPa. The effects of different operating conditions on gas, liquid and solid products were studied. It was found that the novel phenomenon that carbon microspheres with uniform specifications on the surface of solid residue. Mechanism analysis results showed the plastic depolymerized to form the oligomer, monomer and its derivatives, which were subsequently cracked and gasified, or polycondensed into a nuclear to form carbon microspheres at a certain critical concentration of nucleation. With the gasification reaction proceeds, carbon microspheres with a smoother surface and a more uniform size are formed with a diameter of about 0.8–1.5 μm. The experimental results showed that increasing the reaction temperature, time and reducing the feedstock concentration significantly improved the gasification performance of the plastic, but the change of reaction pressure had little effect on the gasification performance. Finally, it was found that under the optimal gasification reaction conditions, the plastic carbon conversion rate reached 94.48 wt%.

Suggested Citation

  • Bai, Bin & Liu, Yigang & Wang, Qiuxia & Zou, Jian & Zhang, Hua & Jin, Hui & Li, Xianwen, 2019. "Experimental investigation on gasification characteristics of plastic wastes in supercritical water," Renewable Energy, Elsevier, vol. 135(C), pages 32-40.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:32-40
    DOI: 10.1016/j.renene.2018.11.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118314113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Bowei & Zhao, Xiao & Zhang, Jie & Wang, Junying & Jin, Hui, 2023. "An investigation of the density of nano-confined subcritical/supercritical water," Energy, Elsevier, vol. 284(C).
    2. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Chen, Yunan & Yi, Lei & Wei, Wenwen & Jin, Hui & Guo, Liejin, 2022. "Hydrogen production by sewage sludge gasification in supercritical water with high heating rate batch reactor," Energy, Elsevier, vol. 238(PA).
    4. Qing Wang & Yufeng Liu & Xudong Zhang & Huicheng Fu & Sen Lin & Shengyuan Song & Cencen Niu, 2020. "Study on an AHP-Entropy-ANFIS Model for the Prediction of the Unfrozen Water Content of Sodium-Bicarbonate-Type Salinization Frozen Soil," Mathematics, MDPI, vol. 8(8), pages 1-20, July.
    5. Hosseinzadeh, Saman & Fattahi, Abolfazl & Sadeghi, Sadegh & Rahmani, Ebrahim & Bidabadi, Mehdi & Zarei, Fatemeh & Xu, Fei, 2020. "Mathematical analysis of steady-state non-premixed multi-zone combustion of porous biomass particles under counter-flow configuration," Renewable Energy, Elsevier, vol. 159(C), pages 705-725.
    6. Zhang, Bowei & Guo, Simao & Jin, Hui, 2022. "Production forecast analysis of BP neural network based on Yimin lignite supercritical water gasification experiment results," Energy, Elsevier, vol. 246(C).
    7. Okolie, Jude A. & Nanda, Sonil & Dalai, Ajay K. & Berruti, Franco & Kozinski, Janusz A., 2020. "A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Wang, Cui & Jin, Hui & Peng, Pai & Chen, Jia, 2019. "Thermodynamics and LCA analysis of biomass supercritical water gasification system using external recycle of liquid residual," Renewable Energy, Elsevier, vol. 141(C), pages 1117-1126.
    9. Bai, Bin & Wang, Weizuo & Jin, Hui, 2020. "Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water," Energy, Elsevier, vol. 191(C).
    10. Tan, Kai Qi & Ahmad, Mohd Azmier & Oh, Wen Da & Low, Siew Chun, 2023. "Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    2. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    4. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    5. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    6. David Antonio Buentello-Montoya & Miguel Ángel Armenta-Gutiérrez & Victor Manuel Maytorena-Soria, 2023. "Parametric Modelling Study to Determine the Feasibility of the Co-Gasification of Macroalgae and Plastics for the Production of Hydrogen-Rich Syngas," Energies, MDPI, vol. 16(19), pages 1-18, September.
    7. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    9. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    10. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    11. Zhao, Xiang & You, Fengqi, 2021. "Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives," Applied Energy, Elsevier, vol. 283(C).
    12. Singh, P. & Déparrois, N. & Burra, K.G. & Bhattacharya, S. & Gupta, A.K., 2019. "Energy recovery from cross-linked polyethylene wastes using pyrolysis and CO2 assisted gasification," Applied Energy, Elsevier, vol. 254(C).
    13. Liu, Xuan & Burra, Kiran G. & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2020. "On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene," Applied Energy, Elsevier, vol. 279(C).
    14. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).
    15. Yang, Ren-Xuan & Wu, Shan-Luo & Chuang, Kui-Hao & Wey, Ming-Yen, 2020. "Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed," Renewable Energy, Elsevier, vol. 159(C), pages 10-22.
    16. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Burra, K.G. & Gupta, A.K., 2018. "Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes," Applied Energy, Elsevier, vol. 220(C), pages 408-418.
    18. Yao, Dingding & Wang, Chi-Hwa, 2020. "Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts," Applied Energy, Elsevier, vol. 265(C).
    19. Li, Dan & Lei, Shijun & Rajput, Gulzeb & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2021. "Study on the co-pyrolysis of waste tires and plastics," Energy, Elsevier, vol. 226(C).
    20. Zuhal Akyürek, 2019. "Sustainable Valorization of Animal Manure and Recycled Polyester: Co-pyrolysis Synergy," Sustainability, MDPI, vol. 11(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:32-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.