IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v6y2016i1p1-d86229.html
   My bibliography  Save this article

Environmental and Energy Performance of Ethanol Production from the Integration of Sugarcane, Corn, and Grain Sorghum in a Multipurpose Plant

Author

Listed:
  • Ana Donke

    (Institute of Energy and Environment, University of Sao Paulo, Av. Prof Luciano Gualberto, 1289, 05508-900 Sao Paulo, Brazil)

  • Alex Nogueira

    (Chemical Engineering Department, Polytechnic School of the University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Bloco 18—Conjunto das Quimicas, 05424-970 Sao Paulo, Brazil)

  • Patricia Matai

    (Institute of Energy and Environment, University of Sao Paulo, Av. Prof Luciano Gualberto, 1289, 05508-900 Sao Paulo, Brazil)

  • Luiz Kulay

    (Chemical Engineering Department, Polytechnic School of the University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Bloco 18—Conjunto das Quimicas, 05424-970 Sao Paulo, Brazil)

Abstract

Although in the last 40 years only sugarcane has been harnessed for the production of ethanol in Brazil, corn production has grown strongly in certain areas, and may serve as a supplementary feedstock for ethanol production in integrated plants during the sugarcane off-season. The aim of this study is to evaluate the environmental and energy performance of ethanol production from sugarcane, corn, and grain sorghum in a Flex Mill in the state of Mato Grosso, Brazil. A life cycle assessment was carried out to survey the production of ethanol from each individual feedstock, and the integration of two of these to increase production during a one-year period. Results indicate that the environmental and energy performance are greatly influenced by agricultural activities, highlighting the importance of sugarcane cultivation. Still, there was an increasing trend of Climate Change impacts, Human Toxicity (carcinogenic) and Ecotoxicity, as well as reduced impact of Photochemical Oxidant Formation and Energy Return on Investment (EROI) as the proportion of ethanol from starchy sources in integration scenarios increases.

Suggested Citation

  • Ana Donke & Alex Nogueira & Patricia Matai & Luiz Kulay, 2016. "Environmental and Energy Performance of Ethanol Production from the Integration of Sugarcane, Corn, and Grain Sorghum in a Multipurpose Plant," Resources, MDPI, vol. 6(1), pages 1-19, December.
  • Handle: RePEc:gam:jresou:v:6:y:2016:i:1:p:1-:d:86229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/6/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/6/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Goldsmith & Renato Rasmussen & Guilherme Signorini & Joao Martines & Carolina Guimaraes, 2010. "The Capital Efficiency Challenge of Bioenergy Models: The Case of Flex Mills in Brazil," Natural Resource Management and Policy, in: Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy, chapter 0, pages 175-192, Springer.
    2. Ana Susmozas & Diego Iribarren & Javier Dufour, 2015. "Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe," Resources, MDPI, vol. 4(2), pages 1-14, June.
    3. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natália de Almeida Menezes & Isadora Luiza Clímaco Cunha & Moisés Teles dos Santos & Luiz Kulay, 2022. "Obtaining bioLPG via the HVO Route in Brazil: A Prospect Study Based on Life Cycle Assessment Approach," Sustainability, MDPI, vol. 14(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šantek, Božidar & Gwehenberger, Gernot & Šantek, Mirela Ivančić & Narodoslawsky, Michael & Horvat, Predrag, 2010. "Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 872-877.
    2. Beghin, John C. & Jensen, Helen H., 2008. "Farm policies and added sugars in US diets," Food Policy, Elsevier, vol. 33(6), pages 480-488, December.
    3. Burnes, Ellen & Wichelns, Dennis & Hagen, John W., 2005. "Economic and policy implications of public support for ethanol production in California's San Joaquin Valley," Energy Policy, Elsevier, vol. 33(9), pages 1155-1167, June.
    4. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    5. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    6. Castoldi, Nicola & Bechini, Luca & Ferrante, Antonio, 2011. "Fossil energy usage for the production of baby leaves," Energy, Elsevier, vol. 36(1), pages 86-93.
    7. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    8. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    9. Eaves, James & Eaves, Stephen, 2007. "Renewable corn-ethanol and energy security," Energy Policy, Elsevier, vol. 35(11), pages 5958-5963, November.
    10. Raush, Kent D. & Belyea, Ronald L. & Singh, Vijay & Tumbleson, M.E., 2007. "Corn Processing Coproducts from Ethanol Production," Biofuels, Food and Feed Tradeoffs Conference, April 12-13, 2007, St, Louis, Missouri 313708, Farm Foundation.
    11. Rausch, Kent D. & Belyea, Ronald L. & Singh, Vijay & Tumbleson, M.E., 2007. "Corn processing coproducts from ethanol production," Biofuels, Food and Feed Tradeoffs Conference, April 12-13, 2007, St, Louis, Missouri 48775, Farm Foundation.
    12. Meryemoğlu, Bahar & Hasanoğlu, Arif & Kaya, Burçak & Irmak, Sibel & Erbatur, Oktay, 2014. "Hydrogen production from aqueous-phase reforming of sorghum biomass: An application of the response surface methodology," Renewable Energy, Elsevier, vol. 62(C), pages 535-541.
    13. Sergio Madrid, 2005. "Discussion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 7(3), pages 401-415, September.
    14. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    15. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    16. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. R. Lal, 2007. "Carbon Management in Agricultural Soils," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(2), pages 303-322, February.
    18. Kirby, Natasha & Davison, Matt, 2010. "Using a spark-spread valuation to investigate the impact of corn-gasoline correlation on ethanol plant valuation," Energy Economics, Elsevier, vol. 32(6), pages 1221-1227, November.
    19. Liu, Jin & Wu, Jianguo & Liu, Fengqiao & Han, Xingguo, 2012. "Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China," Applied Energy, Elsevier, vol. 93(C), pages 305-318.
    20. Cherubini, Francesco & Strømman, Anders Hammer & Ulgiati, Sergio, 2011. "Influence of allocation methods on the environmental performance of biorefinery products—A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1070-1077.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:6:y:2016:i:1:p:1-:d:86229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.