IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Sustainability study of hydrogen pathways for fuel cell vehicle applications

Listed author(s):
  • Hwang, Jenn-Jiang
Registered author(s):

    The present work has conducted a comprehensive life-cycle analysis of energy consumption and greenhouse gas (GHG) emission for various fuel/vehicles systems. Focus is placed on the hydrogen-based fuel cell vehicle (FCV) technology, while the gasoline vehicle (GV) equipped with an internal combustion engine (ICE) serves as a reference technology. A fuel-cycle model developed at Argonne National Laboratory, the GREET model, is employed to evaluate the well-to-wheels (WTW) energy and emissions impacts caused by various fuel/vehicle systems. Six potential hydrogen pathways using renewable and non-renewable energy sources are simulated, namely, steam reforming of natural gas and corn ethanol, water electrolysis using grid generation and solar electricity, and coal gasification with and without carbon sequestration. Results showed that the FCVs fuelled with solar electrolysis hydrogen have the greatest benefits in energy conservation and GHG emission reduction. However, by incorporating with the economic consideration, hydrogen from the natural gas reforming is likely to be the primary mode of production for the initial introduction of FCVs.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Renewable and Sustainable Energy Reviews.

    Volume (Year): 19 (2013)
    Issue (Month): C ()
    Pages: 220-229

    in new window

    Handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:220-229
    DOI: 10.1016/j.rser.2012.11.033
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Hwang, Jenn Jiang, 2010. "Promotional policy for renewable energy development in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1079-1087, April.
    2. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economics Reports 34075, United States Department of Agriculture, Economic Research Service.
    3. Boettner, Daisie D. & Moran, Michael J., 2004. "Proton exchange membrane (PEM) fuel cell-powered vehicle performance using direct-hydrogen fueling and on-board methanol reforming," Energy, Elsevier, vol. 29(12), pages 2317-2330.
    4. Hwang, Jenn Jiang, 2012. "Review on development and demonstration of hydrogen fuel cell scooters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3803-3815.
    5. Hwang, Jenn Jiang, 2010. "Sustainable transport strategy for promoting zero-emission electric scooters in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1390-1399, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:220-229. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.