IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i12p1163-d293210.html
   My bibliography  Save this article

Bounded Solutions of Semilinear Time Delay Hyperbolic Differential and Difference Equations

Author

Listed:
  • Allaberen Ashyralyev

    (Department of Mathematics, Near East University, Mersin 10 99138, Turkey
    Department of Mathematics, Peoples’ Friendship University Russia, Moscow 117198, Russia
    Institute of Mathematics and Mathematical Modeling, Almaty 050010, Kazakhstan)

  • Deniz Agirseven

    (Department of Mathematics, Trakya University, Edirne 22030, Turkey)

Abstract

In this paper, we study the initial value problem for a semilinear delay hyperbolic equation in Hilbert spaces with a self-adjoint positive definite operator. The mean theorem on the existence and uniqueness of a bounded solution of this differential problem for a semilinear hyperbolic equation with unbounded time delay term is established. In applications, the existence and uniqueness of bounded solutions of four problems for semilinear hyperbolic equations with time delay in unbounded term are obtained. For the approximate solution of this abstract differential problem, the two-step difference scheme of a first order of accuracy is presented. The mean theorem on the existence and uniqueness of a uniformly bounded solution of this difference scheme with respect to time stepsize is established. In applications, the existence and uniqueness of a uniformly bounded solutions with respect to time and space stepsizes of difference schemes for four semilinear partial differential equations with time delay in unbounded term are obtained. In general, it is not possible to get the exact solution of semilinear hyperbolic equations with unbounded time delay term. Therefore, numerical results for the solution of difference schemes for one and two dimensional semilinear hyperbolic equation with time delay are presented. Finally, some numerical examples are given to confirm the theoretical analysis.

Suggested Citation

  • Allaberen Ashyralyev & Deniz Agirseven, 2019. "Bounded Solutions of Semilinear Time Delay Hyperbolic Differential and Difference Equations," Mathematics, MDPI, vol. 7(12), pages 1-38, December.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1163-:d:293210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/12/1163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/12/1163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Hui, 2015. "Convergence and asymptotic stability of Galerkin methods for linear parabolic equations with delays," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 160-178.
    2. Allaberen Ashyralyev & Pavel E. Sobolevskii, 2005. "Two new approaches for construction of the high order of accuracy difference schemes for hyperbolic differential equations," Discrete Dynamics in Nature and Society, Hindawi, vol. 2005, pages 1-31, January.
    3. A. Ashyralyev & J. Pastor & S. Piskarev & H. A. Yurtsever, 2015. "Second Order Equations in Functional Spaces: Qualitative and Discrete Well-Posedness," Abstract and Applied Analysis, Hindawi, vol. 2015, pages 1-63, July.
    4. Hao, Zhaopeng & Fan, Kai & Cao, Wanrong & Sun, Zhizhong, 2016. "A finite difference scheme for semilinear space-fractional diffusion equations with time delay," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 238-254.
    5. Deniz Agirseven, 2012. "Approximate Solutions of Delay Parabolic Equations with the Dirichlet Condition," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-31, June.
    6. H. Chi & H. Poorkarimi & J. Wiener & S. M. Shah, 1989. "On the exponential growth of solutions to non-linear hyperbolic equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 12, pages 1-7, January.
    7. Пигнастый, Олег & Koжевников, Георгий, 2019. "Распределенная Динамическая Pde-Модель Программного Управления Загрузкой Технологического Оборудования Производственной Линии [Distributed dynamic PDE-model of a program control by utilization of t," MPRA Paper 93278, University Library of Munich, Germany, revised 02 Feb 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allaberen Ashyralyev & Sa’adu Bello Mu’azu, 2023. "Bounded Solutions of Semi-Linear Parabolic Differential Equations with Unbounded Delay Terms," Mathematics, MDPI, vol. 11(16), pages 1-14, August.
    2. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    3. Elena-Corina Cipu, 2019. "Duality Results in Quasiinvex Variational Control Problems with Curvilinear Integral Functionals," Mathematics, MDPI, vol. 7(9), pages 1-9, September.
    4. Hanno Gottschalk & Marco Reese, 2021. "An Analytical Study in Multi-physics and Multi-criteria Shape Optimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 486-512, May.
    5. Karel Van Bockstal, 2020. "Existence of a Unique Weak Solution to a Nonlinear Non-Autonomous Time-Fractional Wave Equation (of Distributed-Order)," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    6. Savin Treanţă, 2019. "On Locally and Globally Optimal Solutions in Scalar Variational Control Problems," Mathematics, MDPI, vol. 7(9), pages 1-8, September.
    7. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Ivan Francisco Yupanqui Tello & Alain Vande Wouwer & Daniel Coutinho, 2021. "A Concise Review of State Estimation Techniques for Partial Differential Equation Systems," Mathematics, MDPI, vol. 9(24), pages 1-15, December.
    9. Christian Klein & Julien Riton & Nikola Stoilov, 2021. "Multi-domain spectral approach for the Hilbert transform on the real line," Partial Differential Equations and Applications, Springer, vol. 2(3), pages 1-19, June.
    10. Marco Cirant & Roberto Gianni & Paola Mannucci, 2020. "Short-Time Existence for a General Backward–Forward Parabolic System Arising from Mean-Field Games," Dynamic Games and Applications, Springer, vol. 10(1), pages 100-119, March.
    11. Hao, Zhaopeng & Fan, Kai & Cao, Wanrong & Sun, Zhizhong, 2016. "A finite difference scheme for semilinear space-fractional diffusion equations with time delay," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 238-254.
    12. Yu, Hao & Wu, Boying & Zhang, Dazhi, 2018. "A generalized Laguerre spectral Petrov–Galerkin method for the time-fractional subdiffusion equation on the semi-infinite domain," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 96-111.
    13. Christian Kuehn & Cinzia Soresina, 2020. "Numerical continuation for a fast-reaction system and its cross-diffusion limit," Partial Differential Equations and Applications, Springer, vol. 1(2), pages 1-26, April.
    14. Zaiping Zhu & Andres Iglesias & Liqi Zhou & Lihua You & Jianjun Zhang, 2022. "PDE-Based 3D Surface Reconstruction from Multi-View 2D Images," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    15. Wei Zhou & Xingxing Hao & Kaidi Wang & Zhenyang Zhang & Yongxiang Yu & Haonan Su & Kang Li & Xin Cao & Arjan Kuijper, 2020. "Improved estimation of motion blur parameters for restoration from a single image," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    16. Denny Ivanal Hakim & Yoshihiro Sawano, 2021. "Complex interpolation of variable Morrey spaces," Mathematische Nachrichten, Wiley Blackwell, vol. 294(11), pages 2140-2150, November.
    17. Knut K. Aase & Petter Bjerksund, 2021. "The Optimal Spending Rate versus the Expected Real Return of a Sovereign Wealth Fund," JRFM, MDPI, vol. 14(9), pages 1-36, September.
    18. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    19. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    20. Tim Breitenbach & Alfio Borzì, 2020. "The Pontryagin maximum principle for solving Fokker–Planck optimal control problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 499-533, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1163-:d:293210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.