IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Perfection and stability of stationary points with applications to noncooperative games

Listed author(s):
  • van der Laan, Gerard

    (Center for Mathematical Economics, Bielefeld University)

  • Talman, Dolf

    (Center for Mathematical Economics, Bielefeld University)

  • Yang, Zaifu

    (Center for Mathematical Economics, Bielefeld University)

This discussion paper resulted in a publication in the 'SIAM Journal on Optimization', 2006, 16, 854-870. It is well known that an upper semi-continuous compact- and convex-valued mapping fi from a nonempty compact and convex set X to the Euclidean space of which X is a subset has at least one stationary point, being a point in X at which the image fi(x) has a nonempty intersection with the normal cone at x. In many circumstances there may be more than one stationary point. In this paper we refine the concept of stationary point by perturbing simultaneously both the set X and the solution concept. In case a stationary point is the limit of a sequence of perturbed solutions on a sequence of sets converging continuously to X we say that the stationary point is stabIe with respect to this sequenceof sets and the mapping which defines the perturbed solution. It is shown that stable stationary points exist for a large class of perturbations. A specific refinement, called robustness, is obtained if a stationary point is the limit of stationary points on a sequence of sets converging to X. It is shown that a robust stationary point always exists for any sequence of sets which starts from an interior point and converges to X in a continuous way.We also discuss several applications in noncooperative game theory. We first show that two well known refinements of the Nash equilibrium, namely, perfect Nash equilibrium and proper Nash equilibrium, are special cases of our robustness concept. Further, a third special case of robustness refines the concept of properness and a robust Nash equilibrium is shown to exist for every game. In symmetric bimatrix games, our results imply the existence of a symmetric proper equilibrium. Applying our results to the field of evolutionary game theory yields a refinement of the stationary points of the replicator dynamics. We show that the refined solution always exists, contrary to many weIl known refinement concepts in the field that may fail

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: First Version, 2002
Download Restriction: no

Paper provided by Center for Mathematical Economics, Bielefeld University in its series Center for Mathematical Economics Working Papers with number 344.

in new window

Date of creation: 04 Apr 2017
Handle: RePEc:bie:wpaper:344
Contact details of provider: Postal:
Postfach 10 01 31, 33501 Bielefeld

Phone: +49(0)521-106-4907
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Dai, Y. & van der Laan, G. & Talman, A.J.J. & Yamamoto, Y., 1989. "A simplicial algorithm for the nonlinear stationary point problem on an unbounded polyhedron," Discussion Paper 1989-52, Tilburg University, Center for Economic Research.
  2. Talman, A.J.J. & Yamamoto, Y., 1989. "A simplicial algorithm for stationary point problems on polytopes," Other publications TiSEM 0d6b2de0-17c0-4d5e-963f-5, Tilburg University, School of Economics and Management.
  3. Yamamoto, Yoshitsugu, 1993. "A Path-Following Procedure to Find a Proper Equilibrium of Finite Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(3), pages 249-259.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:344. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bettina Weingarten)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.