IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1542-d1651127.html
   My bibliography  Save this article

A Three-Level Meta-Frontier Framework with Machine Learning Projections for Carbon Emission Efficiency Analysis: Heterogeneity Decomposition and Policy Implications

Author

Listed:
  • Xiaoxia Zhu

    (Institute of Advanced Studies in Humanities and Social Sciences, Beijing Normal University, Zhuhai 519087, China)

  • Tongyue Feng

    (Institute of Advanced Studies in Humanities and Social Sciences, Beijing Normal University, Zhuhai 519087, China)

  • Yuhe Shen

    (The State Radio Monitoring Center, Beijing 100043, China)

  • Ning Zhang

    (Faculty of Arts and Science, Beijing Normal University, Zhuhai 519087, China)

  • Xu Guo

    (School of Economics & Management, Fuzhou University, Fuzhou 350108, China)

Abstract

This study proposes a three-level meta-frontier framework enhanced with machine learning-driven projection methods to address the dual heterogeneity in carbon emission efficiency analysis arising from regional disparities and industrial diversification. Methodologically, we introduce two novel projection combinations—“exogenous-exogenous-accumulation (E-E-A) and exogenous-exogenous-consistent (E-E-C)”—to resolve the inconsistency of technology gap ratios (TGRs > 1) in traditional nonradial directional distance function (DDF) models. Reinforcement learning (RL) optimizes dynamic direction vectors, whereas graph neural networks (GNNs) encode spatial interdependencies to constrain the TGR within [0, 1]. Empirical analysis of 60 countries reveals that (1) E-E-C eliminates the TGR overestimation by 12–18% in energy-intensive sectors (e.g., reducing Asia’s secondary industry T G R 1 from 1.160 to 1.000); (2) industrial heterogeneity dominates inefficiency in Asia (IHI = 0.207), whereas management gaps drive global secondary sector inefficiency (MI = 0.678); and (3) policy simulations advocate for decentralized renewables in Africa, fiscal incentives for Asian coal retrofits, and expanded EU carbon border taxes. Computational enhancements via Apache Spark achieve a 58% runtime reduction. The framework advances environmental efficiency analysis by integrating machine learning with meta-frontier theory, offering both methodological rigor (via regularization and GNN constraints) and actionable decarbonization pathways. Limitations include static heterogeneity assumptions and data granularity gaps, prompting the future integration of IoT-enabled dynamic models.

Suggested Citation

  • Xiaoxia Zhu & Tongyue Feng & Yuhe Shen & Ning Zhang & Xu Guo, 2025. "A Three-Level Meta-Frontier Framework with Machine Learning Projections for Carbon Emission Efficiency Analysis: Heterogeneity Decomposition and Policy Implications," Mathematics, MDPI, vol. 13(9), pages 1-29, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1542-:d:1651127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    2. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    3. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    4. Wang, Ailun & Hu, Shuo & Li, Jianglong, 2022. "Using machine learning to model technological heterogeneity in carbon emission efficiency evaluation: The case of China's cities," Energy Economics, Elsevier, vol. 114(C).
    5. Toba Stephen Olasehinde & Fangbin Qiao & Shiping Mao, 2023. "Impact of Improved Maize Varieties on Production Efficiency in Nigeria: Separating Technology from Managerial Gaps," Agriculture, MDPI, vol. 13(3), pages 1-14, March.
    6. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    7. Qingshan Ma & Yuanmeng Zhang & Kexin Yang & Lingyun He, 2021. "Have China’s Pilot Free Trade Zones Improved Green Total Factor Productivity?," IJERPH, MDPI, vol. 18(21), pages 1-20, November.
    8. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    2. Zhencheng Xing & Jigan Wang & Jie Zhang, 2017. "CO 2 Emission Performance, Mitigation Potential, and Marginal Abatement Cost of Industries Covered in China’s Nationwide Emission Trading Scheme: A Meta-Frontier Analysis," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    3. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    4. Wirat Krasachat & Suthathip Yaisawarng, 2021. "Directional Distance Function Technical Efficiency of Chili Production in Thailand," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    5. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    6. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    7. Barnabé Walheer, 2019. "Dynamic directional nonparametric profit efficiency analysis for a single decision-making unit: an aggregation approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1123-1149, December.
    8. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    9. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    10. Bonasia, Mariangela & Kounetas, Konstantinos & Oreste, Napolitano, 2020. "Assessment of regional productive performance of European health systems under a metatechnology framework," Economic Modelling, Elsevier, vol. 84(C), pages 234-248.
    11. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    12. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    13. Kounetas, Konstantinos, 2015. "Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries," Energy Policy, Elsevier, vol. 83(C), pages 277-287.
    14. Fu, Tsu-Tan & Juo, Jia-Ching & Chiang, Han-Chin & Yu, Ming-Miin & Huang, Mei-ying, 2016. "Risk-based decompositions of the meta profit efficiency of Taiwanese and Chinese banks," Omega, Elsevier, vol. 62(C), pages 34-46.
    15. Xiaohong Liu & Jiasen Sun & Feng Yang & Jie Wu, 2020. "How ownership structure affects bank deposits and loan efficiencies: an empirical analysis of Chinese commercial banks," Annals of Operations Research, Springer, vol. 290(1), pages 983-1008, July.
    16. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    17. Juan Aparicio & Magdalena Kapelko, 2019. "Enhancing the Measurement of Composite Indicators of Corporate Social Performance," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 807-826, July.
    18. Du, Limin & Hanley, Aoife & Zhang, Ning, 2016. "Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis," Resource and Energy Economics, Elsevier, vol. 43(C), pages 14-32.
    19. Mohammad Nourani & Qian Long Kweh & Wen-Min Lu & Ikhlaas Gurrib, 2022. "Operational and investment efficiency of investment trust companies: Do foreign firms outperform domestic firms?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-26, December.
    20. Kai He & Liu Jie, 2025. "Evaluation of the eco-efficiency of the industrial system in China considering regional heterogeneity and dynamics," Operational Research, Springer, vol. 25(1), pages 1-36, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1542-:d:1651127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.