IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i14p2230-d1698084.html
   My bibliography  Save this article

The Use of Minimization Solvers for Optimizing Time-Varying Autoregressive Models and Their Applications in Finance

Author

Listed:
  • Zhixuan Jia

    (School of Information Management, Wuhan University, Wuhan 430072, China)

  • Wang Li

    (School of Information Management, Wuhan University, Wuhan 430072, China)

  • Yunlong Jiang

    (School of Information Management, Wuhan University, Wuhan 430072, China)

  • Xingshen Liu

    (School of Information Management, Wuhan University, Wuhan 430072, China)

Abstract

Time series data are fundamental for analyzing temporal dynamics and patterns, enabling researchers and practitioners to model, forecast, and support decision-making across a wide range of domains, such as finance, climate science, environmental studies, and signal processing. In the context of high-dimensional time series, the Vector Autoregressive model (VAR) is widely used, wherein each variable is modeled as a linear combination of lagged values of all variables in the system. However, the traditional VAR framework relies on the assumption of stationarity, which states that the autoregressive coefficients remain constant over time. Unfortunately, this assumption often fails in practice, especially in systems subject to structural breaks or evolving temporal dynamics. The Time-Varying Vector Autoregressive (TV-VAR) model has been developed to address this limitation, allowing model parameters to vary over time and thereby offering greater flexibility in capturing non-stationary behavior. In this study, we propose an enhanced modeling approach for the TV-VAR framework by incorporating minimization solvers in generalized additive models and one-sided kernel smoothing techniques. The effectiveness of the proposed methodology is assessed using simulations based on non-homogeneous Markov chains, accompanied by a detailed discussion of its advantages and limitations. Finally, we illustrate the practical utility of our approach using an application to real-world financial data.

Suggested Citation

  • Zhixuan Jia & Wang Li & Yunlong Jiang & Xingshen Liu, 2025. "The Use of Minimization Solvers for Optimizing Time-Varying Autoregressive Models and Their Applications in Finance," Mathematics, MDPI, vol. 13(14), pages 1-21, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2230-:d:1698084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/14/2230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/14/2230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    2. Jesús Crespo Cuaresma & Martin Feldkircher & Florian Huber, 2016. "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1371-1391, November.
    3. Olayungbo, D.O., 2019. "Effects of oil export revenue on economic growth in Nigeria: A time varying analysis of resource curse," Resources Policy, Elsevier, vol. 64(C).
    4. Spodniak, Petr & Ollikka, Kimmo & Honkapuro, Samuli, 2021. "The impact of wind power and electricity demand on the relevance of different short-term electricity markets: The Nordic case," Applied Energy, Elsevier, vol. 283(C).
    5. Pascal Paul, 2020. "The Time-Varying Effect of Monetary Policy on Asset Prices," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 690-704, October.
    6. Jesús Crespo Cuaresma & Gernot Doppelhofer & Martin Feldkircher & Florian Huber, 2019. "Spillovers from US monetary policy: evidence from a time varying parameter global vector auto‐regressive model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(3), pages 831-861, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pfarrhofer, Michael & Stelzer, Anna, 2025. "High-frequency and heteroskedasticity identification in multicountry models: Revisiting spillovers of monetary shocks," Macroeconomic Dynamics, Cambridge University Press, vol. 29, pages 1-1, January.
    2. Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
    3. George N. Apostolakis & Nikolaos Giannellis & Athanasios P. Papadopoulos, 2023. "Macro‐financial effects of monetary policy easing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 715-738, April.
    4. Lastauskas, Povilas & Nguyen, Anh Dinh Minh, 2023. "Global impacts of US monetary policy uncertainty shocks," Journal of International Economics, Elsevier, vol. 145(C).
    5. Camehl, Annika & von Schweinitz, Gregor, 2023. "What explains international interest rate co-movement?," IWH Discussion Papers 3/2023, Halle Institute for Economic Research (IWH), revised 2023.
    6. Feldkircher, Martin & Gruber, Thomas & Huber, Florian, 2020. "International effects of a compression of euro area yield curves," Journal of Banking & Finance, Elsevier, vol. 113(C).
    7. Schnücker, A.M., 2019. "Penalized Estimation of Panel Vector Autoregressive Models," Econometric Institute Research Papers EI-2019-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Nuri Hacıevliyagil & Krzysztof Drachal & Ibrahim Halil Eksi, 2022. "Predicting House Prices Using DMA Method: Evidence from Turkey," Economies, MDPI, vol. 10(3), pages 1-27, March.
    9. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    10. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    11. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    12. Andrejs Zlobins, 2020. "Country-level effects of the ECB’s expanded asset purchase programme," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 20(2), pages 187-217.
    13. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    14. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    15. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    16. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Michael D. Bauer & Eric T. Swanson, 2023. "An Alternative Explanation for the "Fed Information Effect"," American Economic Review, American Economic Association, vol. 113(3), pages 664-700, March.
    18. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    19. Mai Li & Ying Lin & Qianmei Feng & Wenjiang Fu & Shenglin Peng & Siwei Chen & Mahesh Paidpilli & Chirag Goel & Eduard Galstyan & Venkat Selvamanickam, 2025. "Quantile regression-enriched event modeling framework for dropout analysis in high-temperature superconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3009-3030, June.
    20. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2230-:d:1698084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.