IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i6p848-d1356820.html
   My bibliography  Save this article

The Emission Reduction Technology Decision of the Port Supply Chain

Author

Listed:
  • Yan Zhou

    (Department of Port and Shipping Management, Guangzhou Maritime University, Guangzhou 510725, China)

  • Haiying Zhou

    (Department of Port and Shipping Management, Guangzhou Maritime University, Guangzhou 510725, China)

Abstract

The technology options for sustainable development are explored with customer low-carbon preference in a port supply chain consisting of one ship and one port. Port supply chains can opt for either shower power or low-sulfur fuel oil to cut down emissions. We set game models considering three power structures: the port dominant (port-led Stackelberg game), the ship dominant (ship-led Stackelberg game), and the port and ship on the same footing (Nash game). We compare the performances of different technologies. It is shown that, when customer low-carbon preference and carbon tax are both low, LSFO is the appropriate choice from the supply chain’s profit perspective, SP is preferred from the emission control perspective, and LSFO is preferred from the social welfare perspective. However, when customers’ low-carbon preferences, carbon tax, and environmental concerns are all low or all high, LSFO should be adopted from the view of social welfare. The profits and carbon emissions of the supply chain in the Nash game are higher than those in the Stackelberg game. While the environmental concern is low, the social welfare of the supply chain in the Nash game is greater than that in the Stackelberg game. Otherwise, it is less than that in the Stackelberg game. The obtained results can help governments formulate policies and ships make emission reduction technology decisions according to their own interests.

Suggested Citation

  • Yan Zhou & Haiying Zhou, 2024. "The Emission Reduction Technology Decision of the Port Supply Chain," Mathematics, MDPI, vol. 12(6), pages 1-20, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:848-:d:1356820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/6/848/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/6/848/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weihua Liu & Di Wang & Ou Tang & Donglei Zhu, 2018. "The impacts of logistics service integrator's overconfidence behaviour on supply chain decision under demand surge," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 12(4), pages 558-597.
    2. Hall, William J., 2010. "Assessment of CO2 and priority pollutant reduction by installation of shoreside power," Resources, Conservation & Recycling, Elsevier, vol. 54(7), pages 462-467.
    3. Cariou, Pierre & Halim, Ronald A. & Rickard, Bradley J., 2023. "Ship-owner response to carbon taxes: Industry and environmental implications," Ecological Economics, Elsevier, vol. 212(C).
    4. Fan Ding & Zhangping Lu & Mengfan Jin & Licheng Sun, 2022. "Manufacturer’s Encroachment and Carbon Emission Reduction Decisions Considering Cap-and-Trade Regulation and Consumers’ Low-Carbon Preference," IJERPH, MDPI, vol. 19(16), pages 1-28, August.
    5. Hu, Qiaolin & Gu, Weihua & Wang, Shuaian, 2022. "Optimal subsidy scheme design for promoting intermodal freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    6. Feng Pian & Lili Xu & Yuyan Chen & Sang-Ho Lee, 2020. "Global Emission Taxes and Port Privatization Policies under International Competition," Sustainability, MDPI, vol. 12(16), pages 1-25, August.
    7. Wang, Tingsong & Wang, Xinchang & Meng, Qiang, 2018. "Joint berth allocation and quay crane assignment under different carbon taxation policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 18-36.
    8. Cohen, Mark A. & Vandenbergh, Michael P., 2012. "The potential role of carbon labeling in a green economy," Energy Economics, Elsevier, vol. 34(S1), pages 53-63.
    9. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    10. Jinxuan Song & Xu Yan, 2023. "Impact of Government Subsidies, Competition, and Blockchain on Green Supply Chain Decisions," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    11. Weihua Liu & Dong Xie & Yang Liu & Xiaoyan Liu, 2015. "Service capability procurement decision in logistics service supply chain: a research under demand updating and quality guarantee," International Journal of Production Research, Taylor & Francis Journals, vol. 53(2), pages 488-510, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weihua Liu & Xinran Shen & Di Wang, 2020. "The impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain: a real case study from China," Annals of Operations Research, Springer, vol. 291(1), pages 565-604, August.
    2. Wang, Jian & Zhu, Wenbo, 2023. "Analyzing the development of competition and cooperation among ocean carriers considering the impact of carbon tax policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Haiying Zhou & Wenjing Zhang, 2022. "Choice of Emission Control Technology in Port Areas with Customers’ Low-Carbon Preference," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    4. Jingwen Qi & Hans Wang & Jianfeng Zheng, 2022. "Promoting Liquefied Natural Gas (LNG) Bunkering for Maritime Transportation: Should Ports or Ships Be Subsidized?," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    5. Wang, Shuaian & Yan, Ran, 2023. "Fundamental challenge and solution methods in prescriptive analytics for freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    6. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
    7. Ni Du & Qinglan Han, 2018. "Pricing and Service Quality Guarantee Decisions in Logistics Service Supply Chain with Fairness Concern," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-41, October.
    8. Guillaume Gruère, 2015. "An Analysis of the Growth in Environmental Labelling and Information Schemes," Journal of Consumer Policy, Springer, vol. 38(1), pages 1-18, March.
    9. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    10. Wang, Chih-Wei & Wu, Yu-Ching & Hsieh, Hsin-Yi & Huang, Po-Hsiang & Lin, Meng-Chieh, 2022. "Does green bond issuance have an impact on climate risk concerns?," Energy Economics, Elsevier, vol. 111(C).
    11. Haq, Gary & Weiss, Martin, 2016. "CO2 labelling of passenger cars in Europe: Status, challenges, and future prospects," Energy Policy, Elsevier, vol. 95(C), pages 324-335.
    12. Alistair Munro & Marieta Valente, 2016. "Green Goods: Are They Good or Bad News for the Environment? Evidence from a Laboratory Experiment on Impure Public Goods," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(2), pages 317-335, October.
    13. Xiongfeng Pan & Jing Zhang & Changyu Li & Rong Quan & Bin Li, 2018. "Exploring Dynamic Impact of Foreign Direct Investment on China’s CO $$_{2}$$ 2 Emissions Using Markov-Switching Vector Error Correction Model," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1139-1151, December.
    14. Zhao, Rui & Zhou, Xiao & Han, Jiaojie & Liu, Chengliang, 2016. "For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 262-274.
    15. Ang Yang & Xiangyu Meng & He He & Liang Wang & Jing Gao, 2022. "Towards Optimized ARMGs’ Low-Carbon Transition Investment Decision Based on Real Options," Energies, MDPI, vol. 15(14), pages 1-16, July.
    16. Muen Uddin & Shitharth Selvarajan & Muath Obaidat & Shams Ul Arfeen & Alaa O. Khadidos & Adil O. Khadidos & Maha Abdelhaq, 2023. "From Hype to Reality: Unveiling the Promises, Challenges and Opportunities of Blockchain in Supply Chain Systems," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    17. Weihua Liu & Donglei Zhu & Yijia Wang, 2017. "Capacity Procurement in Logistics Service Supply Chain with Demand Updating and Rational Expectation Behavior," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-48, December.
    18. Chien‐Ming Chen & Maria J. Montes‐Sancho, 2017. "Do Perceived Operational Impacts Affect the Portfolio of Carbon‐Abatement Technologies?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 24(3), pages 235-248, May.
    19. Elofsson, Katarina & Bengtsson, Niklas & Matsdotter, Elina & Arntyr, Johan, 2016. "The impact of climate information on milk demand: Evidence from a field experiment," Food Policy, Elsevier, vol. 58(C), pages 14-23.
    20. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:848-:d:1356820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.