IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1248-d1087880.html
   My bibliography  Save this article

Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System

Author

Listed:
  • Ali M. Jasim

    (Electrical Engineering Department, University of Basra, Basra 61001, Iraq
    Department of Communications Engineering, Iraq University College, Basra 61001, Iraq)

  • Basil H. Jasim

    (Electrical Engineering Department, University of Basra, Basra 61001, Iraq)

  • Florin-Constantin Baiceanu

    (Power Engineering Department, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

  • Bogdan-Constantin Neagu

    (Power Engineering Department, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania)

Abstract

Recent advances in electric grid technology have led to sustainable, modern, decentralized, bidirectional microgrids (MGs). The MGs can support energy storage, renewable energy sources (RESs), power electronics converters, and energy management systems. The MG system is less costly and creates less CO 2 than traditional power systems, which have significant operational and fuel expenses. In this paper, the proposed hybrid MG adopts renewable energies, including solar photovoltaic (PV), wind turbines (WT), biomass gasifiers (biogasifier), batteries’ storage energies, and a backup diesel generator. The energy management system of the adopted MG resources is intended to satisfy the load demand of Basra, a city in southern Iraq, considering the city’s real climate and demand data. For optimal sizing of the proposed MG components, a meta-heuristic optimization algorithm (Hybrid Grey Wolf with Cuckoo Search Optimization (GWCSO)) is applied. The simulation results are compared with those achieved using Particle Swarm Optimization (PSO), Genetic Algorithms (GA), Grey Wolf Optimization (GWO), Cuckoo Search Optimization (CSO), and Antlion Optimization (ALO) to evaluate the optimal sizing results with minimum costs. Since the adopted GWCSO has the lowest deviation, it is more robust than the other algorithms, and their optimal number of component units, annual cost, and Levelized Cost Of Energy (LCOE) are superior to the other ones. According to the optimal annual analysis, LCOE is 0.1192 and the overall system will cost about USD 2.6918 billion.

Suggested Citation

  • Ali M. Jasim & Basil H. Jasim & Florin-Constantin Baiceanu & Bogdan-Constantin Neagu, 2023. "Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System," Mathematics, MDPI, vol. 11(5), pages 1, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1248-:d:1087880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1248/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1248/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2019. "Optimal sizing and adaptive energy management of a novel four-wheel-drive hybrid powertrain," Energy, Elsevier, vol. 187(C).
    2. Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.
    3. Abed, Fayadh M. & Al-Douri, Y. & Al-Shahery, Ghazy. M.Y., 2014. "Review on the energy and renewable energy status in Iraq: The outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 816-827.
    4. Ceren Erdin & Gokhan Ozkaya, 2019. "Turkey’s 2023 Energy Strategies and Investment Opportunities for Renewable Energy Sources: Site Selection Based on ELECTRE," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    5. Bilal Naji Alhasnawi & Basil H. Jasim & Arshad Naji Alhasnawi & Bishoy E. Sedhom & Ali M. Jasim & Azam Khalili & Vladimír Bureš & Alessandro Burgio & Pierluigi Siano, 2022. "A Novel Approach to Achieve MPPT for Photovoltaic System Based SCADA," Energies, MDPI, vol. 15(22), pages 1-29, November.
    6. Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Muzaidi Othman & Brian Dalby Rasmussen & Yusuf A. Al-Turki, 2022. "Optimal Configuration and Sizing of Seaport Microgrids including Renewable Energy and Cold Ironing—The Port of Aalborg Case Study," Energies, MDPI, vol. 15(2), pages 1-18, January.
    7. Quynh T. Tran & Kevin Davies & Saeed Sepasi, 2021. "Isolation Microgrid Design for Remote Areas with the Integration of Renewable Energy: A Case Study of Con Dao Island in Vietnam," Clean Technol., MDPI, vol. 3(4), pages 1-17, November.
    8. Vijay Mudgal & Preeti Singh & Sourav Khanna & Chandan Pandey & Victor Becerra & Tapas K. Mallick & K. S. Reddy, 2021. "Optimization of a novel Hybrid Wind Bio Battery Solar Photovoltaic System Integrated with Phase Change Material," Energies, MDPI, vol. 14(19), pages 1-21, October.
    9. Ahmed A. Zaki Diab & Ali M. El-Rifaie & Magdy M. Zaky & Mohamed A. Tolba, 2022. "Optimal Sizing of Stand-Alone Microgrids Based on Recent Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(1), pages 1-25, January.
    10. Azoumah, Y. & Yamegueu, D. & Ginies, P. & Coulibaly, Y. & Girard, P., 2011. "Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The "flexy-energy" concept," Energy Policy, Elsevier, vol. 39(1), pages 131-141, January.
    11. Sukamongkol, Y. & Chungpaibulpatana, S. & Ongsakul, W., 2002. "A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads," Renewable Energy, Elsevier, vol. 27(2), pages 237-258.
    12. Alli D. Mukasa & Emelly Mutambatsere & Yannis Arvanitis & Thouraya Triki, 2013. "Working Paper 170 - Development of Wind Energy in Africa," Working Paper Series 449, African Development Bank.
    13. Rullo, P. & Braccia, L. & Luppi, P. & Zumoffen, D. & Feroldi, D., 2019. "Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 140(C), pages 436-451.
    14. Mengyao Han & Jun Tang & Abdul Karim Lashari & Khizar Abbas & Hui Liu & Weidong Liu, 2022. "Unveiling China’s Overseas Photovoltaic Power Stations in Pakistan under Low-Carbon Transition," Land, MDPI, vol. 11(10), pages 1-14, October.
    15. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    16. Sulaiman Alshammari & Ahmed Fathy, 2022. "Optimum Size of Hybrid Renewable Energy System to Supply the Electrical Loads of the Northeastern Sector in the Kingdom of Saudi Arabia," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    17. Hashim Mohammed Almusawi & Arash Farnoosh, 2021. "Economic Analysis of the Electricity Mix of Iraq Using Portfolio Optimization Approach," Post-Print hal-03292662, HAL.
    18. Shahzad, M. Kashif & Zahid, Adeem & ur Rashid, Tanzeel & Rehan, Mirza Abdullah & Ali, Muzaffar & Ahmad, Mueen, 2017. "Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software," Renewable Energy, Elsevier, vol. 106(C), pages 264-273.
    19. Zakaria Belboul & Belgacem Toual & Abdellah Kouzou & Lakhdar Mokrani & Abderrahman Bensalem & Ralph Kennel & Mohamed Abdelrahem, 2022. "Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria," Energies, MDPI, vol. 15(10), pages 1-30, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imen Jarraya & Fatma Abdelhedi & Nassim Rizoug, 2023. "An Innovative Power Management Strategy for Hybrid Battery–Supercapacitor Systems in Electric Vehicle," Mathematics, MDPI, vol. 12(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    2. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    3. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Hossam A. Gabbar & Muhammad R. Abdussami & Md. Ibrahim Adham, 2020. "Micro Nuclear Reactors: Potential Replacements for Diesel Gensets within Micro Energy Grids," Energies, MDPI, vol. 13(19), pages 1-38, October.
    5. Mahdavi, Meisam & Jurado, Francisco & Ramos, Ricardo Alan Verdú & Awaafo, Augustine, 2023. "Hybrid biomass, solar and wind electricity generation in rural areas of Fez-Meknes region in Morocco considering water consumption of animals and anaerobic digester," Applied Energy, Elsevier, vol. 343(C).
    6. Zakaria Belboul & Belgacem Toual & Abdellah Kouzou & Lakhdar Mokrani & Abderrahman Bensalem & Ralph Kennel & Mohamed Abdelrahem, 2022. "Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria," Energies, MDPI, vol. 15(10), pages 1-30, May.
    7. Nazim Hajiyev & Klaudia Smoląg & Ali Abbasov & Valeriy Prasolov, 2020. "Energy War Strategies: The 21st Century Experience," Energies, MDPI, vol. 13(21), pages 1-15, November.
    8. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    9. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    10. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    11. Cheick Tidjane Kone & Jean-Denis Mathias & Gil De Sousa, 2017. "Adaptive management of energy consumption, reliability and delay of wireless sensor node: Application to IEEE 802.15.4 wireless sensor node," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-28, February.
    12. Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2023. "Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions," Energies, MDPI, vol. 16(9), pages 1-34, April.
    13. Hussain H. Al-Kayiem & Sanan T. Mohammad, 2019. "Potential of Renewable Energy Resources with an Emphasis on Solar Power in Iraq: An Outlook," Resources, MDPI, vol. 8(1), pages 1-20, February.
    14. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    15. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    16. Ruben Hidalgo-Leon & Fernando Amoroso & Javier Urquizo & Viviana Villavicencio & Miguel Torres & Pritpal Singh & Guillermo Soriano, 2022. "Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador," Energies, MDPI, vol. 15(5), pages 1-25, February.
    17. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    18. Cantoni, Roberto & Skræp Svenningsen, Lea & Sanfo, Safiétou, 2021. "Unattainable proximity: Solar power and peri-urbanity in central Burkina Faso," Energy Policy, Elsevier, vol. 150(C).
    19. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    20. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1248-:d:1087880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.