IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p834-d1059919.html
   My bibliography  Save this article

A Heuristic Approach for Determining Efficient Vaccination Plans under a SARS-CoV-2 Epidemic Model

Author

Listed:
  • Claudia Hazard-Valdés

    (Departamento de Informática, Universidad Técnica Federico Santa María, Santiago 8940000, Chile)

  • Elizabeth Montero

    (Facultad de Ingeniería, Universidad Andres Bello, Viña del Mar 2531015, Chile)

Abstract

In this work, we propose a local search-based strategy to determine high-quality allocation of vaccines under restricted budgets and time periods. For this, disease spread is modeled as a SEAIR pandemic model. Subgroups are used to understand and evaluate movement restrictions and their effect on interactions between geographical divisions. A tabu search heuristic method is used to determine the number of vaccines and the groups to allocate them in each time period, minimizing the maximum number of infected people at the same time and the total infected population. Available data for COVID-19 daily cases was used to adjust the parameters of the SEAIR models in four study cases: Austria, Belgium, Denmark, and Chile. From these, we can analyze how different vaccination schemes are more beneficial for the population as a whole based on different reproduction numbers, interaction levels, and the availability of resources in each study case. Moreover, from these experiments, a strong relationship between the defined objectives is noticed.

Suggested Citation

  • Claudia Hazard-Valdés & Elizabeth Montero, 2023. "A Heuristic Approach for Determining Efficient Vaccination Plans under a SARS-CoV-2 Epidemic Model," Mathematics, MDPI, vol. 11(4), pages 1-32, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:834-:d:1059919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joshua R. Goldstein & Thomas Cassidy & Kenneth W. Wachter, 2021. "Vaccinating the oldest against COVID-19 saves both the most lives and most years of life," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(11), pages 2026322118-, March.
    2. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    3. Costa-Font, Joan & Vilaplana-Prieto, Cristina, 2022. "Risky restrictions? Mobility restriction effects on risk awareness and anxiety," Health Policy, Elsevier, vol. 126(11), pages 1090-1102.
    4. Maltz, Alberto & Fabricius, Gabriel, 2016. "SIR model with local and global infective contacts: A deterministic approach and applications," Theoretical Population Biology, Elsevier, vol. 112(C), pages 70-79.
    5. Fabricius, Gabriel & Maltz, Alberto, 2020. "Exploring the threshold of epidemic spreading for a stochastic SIR model with local and global contacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Fu, Libi & Song, Weiguo & Lv, Wei & Lo, Siuming, 2014. "Simulation of emotional contagion using modified SIR model: A cellular automaton approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 380-391.
    7. Volchenkov, D & Blanchard, Ph, 2002. "An algorithm generating random graphs with power law degree distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 315(3), pages 677-690.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Lei & Chen, Yu-wang & de Brujin, Oscar, 2021. "Towards understanding socially influenced vaccination decision making: An integrated model of multiple criteria belief modelling and social network analysis," European Journal of Operational Research, Elsevier, vol. 293(1), pages 276-289.
    2. Pirayesh, Amir & Asadaraghi, Alireza & Mohammadi, Mehrdad & Siadat, Ali & Battaïa, Olga, 2025. "A dynamic optimization model for vaccine allocation with age considerations: A study inspired by the COVID-19 pandemic," International Journal of Production Economics, Elsevier, vol. 280(C).
    3. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    4. Matthew Goodkin-Gold & Michael Kremer & Christopher M. Snyder & Heidi L. Williams, 2020. "Optimal Vaccine Subsidies for Endemic and Epidemic Diseases," Working Papers 2020-162, Becker Friedman Institute for Research In Economics.
    5. Jiang, Peng & Klemeš, Jiří Jaromír & Fan, Yee Van & Fu, Xiuju & Tan, Raymond R. & You, Siming & Foley, Aoife M., 2021. "Energy, environmental, economic and social equity (4E) pressures of COVID-19 vaccination mismanagement: A global perspective," Energy, Elsevier, vol. 235(C).
    6. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2022. "Influenza vaccine supply chain coordination under uncertain supply and demand," European Journal of Operational Research, Elsevier, vol. 297(3), pages 930-948.
    7. Lin Chen & Fengli Xu & Zhenyu Han & Kun Tang & Pan Hui & James Evans & Yong Li, 2022. "Strategic COVID-19 vaccine distribution can simultaneously elevate social utility and equity," Nature Human Behaviour, Nature, vol. 6(11), pages 1503-1514, November.
    8. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    9. Alem, Douglas & Caunhye, Aakil M. & Moreno, Alfredo, 2022. "Revisiting Gini for equitable humanitarian logistics," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    10. Mao, Qinghua & Huo, Wenteng & Li, Zunshu & Liu, Xueying & Li, Yang & Wang, Heng, 2024. "Evacuation strategies for wrecked pedestrians considering emotional contagion and safety officers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    11. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    12. Maleki, Abolfazl & Hemmati, Vahid & Reza Abazari, Seyed & Aghsami, Amir & Rabbani, Masoud, 2024. "Optimal distribution and waste management of Covid-19 vaccines from vaccination centers’ satisfaction perspective – A fuzzy time window-based VRP," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    13. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    14. Zhao, Zhen-jun & Liu, Yong-mei & Wang, Ke-xi, 2016. "An analysis of rumor propagation based on propagation force," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 263-271.
    15. Shao, Quan & Yuan, Jia, 2022. "Study on the disposal strategy of civil aviation passenger collective events based on evolutionary game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    16. Dastgoshade, Sohaib & Shafiee, Mohammad & Klibi, Walid & Shishebori, Davood, 2022. "Social equity-based distribution networks design for the COVID-19 vaccine," International Journal of Production Economics, Elsevier, vol. 250(C).
    17. Guo, Chenglin & Huo, Feizhou & Li, Chao & Li, Yufei, 2023. "An evacuation model considering the phototactic behavior of panic pedestrians under limited visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    18. Emanuele Blasioli & Bahareh Mansouri & Srinivas Subramanya Tamvada & Elkafi Hassini, 2023. "Vaccine Allocation and Distribution: A Review with a Focus on Quantitative Methodologies and Application to Equity, Hesitancy, and COVID-19 Pandemic," SN Operations Research Forum, Springer, vol. 4(2), pages 1-32, June.
    19. Hazhir Rahmandad, 2022. "Behavioral responses to risk promote vaccinating high‐contact individuals first," System Dynamics Review, System Dynamics Society, vol. 38(3), pages 246-263, July.
    20. Scagliarini, Tomas & Artime, Oriol & De Domenico, Manlio, 2025. "Assessing the vulnerability of empirical infrastructure networks to natural catastrophes," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:834-:d:1059919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.